Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::DiagPart
#include <array_ops.h>
Returns the diagonal part of the tensor.
Summary
This operation returns a tensor with the diagonal
part of the input
. The diagonal
part is computed as follows:
Assume input
has dimensions [D1,..., Dk, D1,..., Dk]
, then the output is a tensor of rank k
with dimensions [D1,..., Dk]
where:
diagonal[i1,..., ik] = input[i1, ..., ik, i1,..., ik]
.
For example:
# 'input' is [[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]]
tf.diag_part(input) ==> [1, 2, 3, 4]
Args:
- scope: A Scope object
- input: Rank k tensor where k is even and not zero.
Returns:
Output
: The extracted diagonal.
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tensorflow::ops::DiagPart Class Reference\n\ntensorflow::ops::DiagPart\n=========================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns the diagonal part of the tensor.\n\nSummary\n-------\n\nThis operation returns a tensor with the `diagonal` part of the `input`. The `diagonal` part is computed as follows:\n\nAssume `input` has dimensions `[D1,..., Dk, D1,..., Dk]`, then the output is a tensor of rank `k` with dimensions `[D1,..., Dk]` where:\n\n`diagonal[i1,..., ik] = input[i1, ..., ik, i1,..., ik]`.\n\nFor example:\n\n\n```text\n# 'input' is [[1, 0, 0, 0]\n [0, 2, 0, 0]\n [0, 0, 3, 0]\n [0, 0, 0, 4]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\ntf.diag_part(input) ==\u003e [1, 2, 3, 4]\n```\n\n\u003cbr /\u003e\n\nArgs:\n\n- scope: A [Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Rank k tensor where k is even and not zero.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The extracted diagonal.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [DiagPart](#classtensorflow_1_1ops_1_1_diag_part_1a722e0fbf9139d42128d88361fcceffbb)`(const ::`[tensorflow::Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [diagonal](#classtensorflow_1_1ops_1_1_diag_part_1a5c2700969d74c5dcd441f482f69f0575) | `::`[tensorflow::Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_diag_part_1a4a4d8b4387110108a77726a4e37f75ef) | [Operation](/versions/r2.14/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_diag_part_1a7f5dfaa792daf4eebe39b740aaa5a117)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_diag_part_1aef16d4b10102516c099741c0935952e9)`() const ` | |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_diag_part_1a3ffd8291e65d1b66c89fbcc0bb34225e)`() const ` | |\n\nPublic attributes\n-----------------\n\n### diagonal\n\n```text\n::tensorflow::Output diagonal\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### DiagPart\n\n```gdscript\n DiagPart(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]