Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::Exp
#include <math_ops.h>
Computes exponential of x element-wise.
Summary
\(y = e^x\).
This function computes the exponential of every element in the input tensor. i.e. exp(x)
or e^(x)
, where x
is the input tensor. e
denotes Euler's number and is approximately equal to 2.718281. Output is positive for any real input.
x = tf.constant(2.0)
tf.math.exp(x) ==> 7.389056
x = tf.constant([2.0, 8.0])
tf.math.exp(x) ==> array([7.389056, 2980.958], dtype=float32)
For complex numbers, the exponential value is calculated as follows:
e^(x+iy) = e^x * e^iy = e^x * (cos y + i sin y)
Let's consider complex number 1+1j as an example. e^1 * (cos 1 + i sin 1) = 2.7182818284590 * (0.54030230586+0.8414709848j)
x = tf.constant(1 + 1j)
tf.math.exp(x) ==> 1.4686939399158851+2.2873552871788423j
Args:
Returns:
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tensorflow::ops::Exp Class Reference\n\ntensorflow::ops::Exp\n====================\n\n`#include \u003cmath_ops.h\u003e`\n\nComputes exponential of x element-wise.\n\nSummary\n-------\n\n\\\\(y = e\\^x\\\\).\n\nThis function computes the exponential of every element in the input tensor. i.e. `exp(x)` or `e^(x)`, where `x` is the input tensor. `e` denotes Euler's number and is approximately equal to 2.718281. [Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) is positive for any real input.\n\n\n```gdscript\n x = tf.constant(2.0)\n tf.math.exp(x) ==\u003e 7.389056\n```\n\n\u003cbr /\u003e\n\n\n```gdscript\n x = tf.constant([2.0, 8.0])\n tf.math.exp(x) ==\u003e array([7.389056, 2980.958], dtype=float32)\n \n```\n\n\u003cbr /\u003e\n\nFor complex numbers, the exponential value is calculated as follows:\n\n\n```scdoc\n e^(x+iy) = e^x * e^iy = e^x * (cos y + i sin y)\n \n```\n\n\u003cbr /\u003e\n\nLet's consider complex number 1+1j as an example. e\\^1 \\* (cos 1 + i sin 1) = 2.7182818284590 \\* (0.54030230586+0.8414709848j)\n\n\n```gdscript\n x = tf.constant(1 + 1j)\n tf.math.exp(x) ==\u003e 1.4686939399158851+2.2873552871788423j\n \n```\n\n\u003cbr /\u003e\n\nArgs:\n\n- scope: A [Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The y tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Exp](#classtensorflow_1_1ops_1_1_exp_1aa5419f33d177e95f326a2dfcad2953eb)`(const ::`[tensorflow::Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_exp_1ac936e897598d160c335f673bf833bdeb) | [Operation](/versions/r2.14/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [y](#classtensorflow_1_1ops_1_1_exp_1acec4d597d17df94ecccfd9d29eddf575) | `::`[tensorflow::Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_exp_1af53d5710bdc80316d5e9ea12031337af)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_exp_1ae1bad90173cb03f4c2509197101438e1)`() const ` | |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_exp_1a34c367c172a44e41239ff083a588dd85)`() const ` | |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### y\n\n```text\n::tensorflow::Output y\n``` \n\nPublic functions\n----------------\n\n### Exp\n\n```gdscript\n Exp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]