Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::ExpandDims
#include <array_ops.h>
Inserts a dimension of 1 into a tensor's shape.
Summary
Given a tensor input
, this operation inserts a dimension of 1 at the dimension index axis
of input
's shape. The dimension index axis
starts at zero; if you specify a negative number for axis
it is counted backward from the end.
This operation is useful if you want to add a batch dimension to a single element. For example, if you have a single image of shape [height, width, channels]
, you can make it a batch of 1 image with expand_dims(image, 0)
, which will make the shape [1, height, width, channels]
.
Other examples:
# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]
# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
This operation requires that:
-1-input.dims() <= dim <= input.dims()
This operation is related to squeeze()
, which removes dimensions of size 1.
Args:
- scope: A Scope object
- axis: 0-D (scalar). Specifies the dimension index at which to expand the shape of
input
. Must be in the range [-rank(input) - 1, rank(input)]
.
Returns:
Output
: Contains the same data as input
, but its shape has an additional dimension of size 1 added.
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tensorflow::ops::ExpandDims Class Reference\n\ntensorflow::ops::ExpandDims\n===========================\n\n`#include \u003carray_ops.h\u003e`\n\nInserts a dimension of 1 into a tensor's shape.\n\nSummary\n-------\n\nGiven a tensor `input`, this operation inserts a dimension of 1 at the dimension index `axis` of `input`'s shape. The dimension index `axis` starts at zero; if you specify a negative number for `axis` it is counted backward from the end.\n\nThis operation is useful if you want to add a batch dimension to a single element. For example, if you have a single image of shape `[height, width, channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`, which will make the shape `[1, height, width, channels]`.\n\nOther examples:\n\n\n```scdoc\n# 't' is a tensor of shape [2]\nshape(expand_dims(t, 0)) ==\u003e [1, 2]\nshape(expand_dims(t, 1)) ==\u003e [2, 1]\nshape(expand_dims(t, -1)) ==\u003e [2, 1]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# 't2' is a tensor of shape [2, 3, 5]\nshape(expand_dims(t2, 0)) ==\u003e [1, 2, 3, 5]\nshape(expand_dims(t2, 2)) ==\u003e [2, 3, 1, 5]\nshape(expand_dims(t2, 3)) ==\u003e [2, 3, 5, 1]\n```\n\n\u003cbr /\u003e\n\nThis operation requires that:\n\n\n`-1-input.dims() \u003c= dim \u003c= input.dims()`\n\nThis operation is related to `squeeze()`, which removes dimensions of size 1.\n\nArgs:\n\n- scope: A [Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- axis: 0-D (scalar). Specifies the dimension index at which to expand the shape of `input`. Must be in the range `[-rank(input) - 1, rank(input)]`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Contains the same data as `input`, but its shape has an additional dimension of size 1 added.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ExpandDims](#classtensorflow_1_1ops_1_1_expand_dims_1ae2cff3dc910140a50446ed380848baef)`(const ::`[tensorflow::Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` axis)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_expand_dims_1aefcdcc72ed92eb8f0975a90ca998bb71) | [Operation](/versions/r2.14/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_expand_dims_1abc828c5e90fdd61142ffd01878f9f95a) | `::`[tensorflow::Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_expand_dims_1a85ce8553584a8b3a50345d93f0f03b52)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_expand_dims_1aabc0c1aba83330412277a5b6e6f2c04e)`() const ` | |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_expand_dims_1a280db99846027451637ac5d7e7a9d67e)`() const ` | |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### ExpandDims\n\n```gdscript\n ExpandDims(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input axis\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]