Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::MatrixDiag
#include <array_ops.h>
Returns a batched diagonal tensor with a given batched diagonal values.
Summary
Given a diagonal
, this operation returns a tensor with the diagonal
and everything else padded with zeros. The diagonal is computed as follows:
Assume diagonal
has k
dimensions [I, J, K, ..., N]
, then the output is a tensor of rank k+1
with dimensions [I, J, K, ..., N, N]` where:
output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]
.
For example:
# 'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]]
and diagonal.shape = (2, 4)
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]],
[[5, 0, 0, 0]
[0, 6, 0, 0]
[0, 0, 7, 0]
[0, 0, 0, 8]]]
which has shape (2, 4, 4)
Args:
- scope: A Scope object
- diagonal: Rank
k
, where k >= 1
.
Returns:
Output
: Rank k+1
, with output.shape = diagonal.shape + [diagonal.shape[-1]]
.
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tensorflow::ops::MatrixDiag Class Reference\n\ntensorflow::ops::MatrixDiag\n===========================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a batched diagonal tensor with a given batched diagonal values.\n\nSummary\n-------\n\nGiven a `diagonal`, this operation returns a tensor with the `diagonal` and everything else padded with zeros. The diagonal is computed as follows:\n\nAssume `diagonal` has `k` dimensions `[I, J, K, ..., N]`, then the output is a tensor of rank `k+1` with dimensions \\[I, J, K, ..., N, N\\]\\` where:\n\n`output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]`.\n\nFor example:\n\n\n```text\n# 'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]]\n```\n\n\u003cbr /\u003e\n\n\n```text\nand diagonal.shape = (2, 4)\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\ntf.matrix_diag(diagonal) ==\u003e [[[1, 0, 0, 0]\n [0, 2, 0, 0]\n [0, 0, 3, 0]\n [0, 0, 0, 4]],\n [[5, 0, 0, 0]\n [0, 6, 0, 0]\n [0, 0, 7, 0]\n [0, 0, 0, 8]]]\n```\n\n\u003cbr /\u003e\n\n\n```perl6\nwhich has shape (2, 4, 4)\n```\n\n\u003cbr /\u003e\n\nArgs:\n\n- scope: A [Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- diagonal: Rank `k`, where `k \u003e= 1`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Rank `k+1`, with `output.shape = diagonal.shape + [diagonal.shape[-1]]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixDiag](#classtensorflow_1_1ops_1_1_matrix_diag_1a2b263945a55c830cec2aa8e732ad4c37)`(const ::`[tensorflow::Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` diagonal)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_matrix_diag_1a2a3f9fd08f8b6b8b5209a62bc2c0e4e4) | [Operation](/versions/r2.14/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_matrix_diag_1aba2480ed932f279c48fc6028f6be7a92) | `::`[tensorflow::Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_diag_1aa1db7faefb57b9fee4eddaee99c3a5a3)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_diag_1ae38fc37ca0a5a229e9c9d3f827ebfa6d)`() const ` | |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_diag_1aaaad00f636d2ad7be0fd131133b79006)`() const ` | |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### MatrixDiag\n\n```gdscript\n MatrixDiag(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input diagonal\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]