Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::MatrixSetDiagV2
#include <array_ops.h>
Returns a batched matrix tensor with new batched diagonal values.
Summary
Given input
and diagonal
, this operation returns a tensor with the same shape and values as input
, except for the specified diagonals of the innermost matrices. These will be overwritten by the values in diagonal
.
input
has r+1
dimensions [I, J, ..., L, M, N]
. When k
is scalar or k[0] == k[1]
, diagonal
has r
dimensions [I, J, ..., L, max_diag_len]
. Otherwise, it has r+1
dimensions [I, J, ..., L, num_diags, max_diag_len]
. num_diags
is the number of diagonals, num_diags = k[1] - k[0] + 1
. max_diag_len
is the longest diagonal in the range [k[0], k[1]]
, max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))
The output is a tensor of rank k+1
with dimensions [I, J, ..., L, M, N]
. If k
is scalar or k[0] == k[1]
:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1]
input[i, j, ..., l, m, n] ; otherwise
Otherwise,
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
input[i, j, ..., l, m, n] ; otherwise
where
d = n - m
,
diag_index = k[1] - d
, and
index_in_diag = n - max(d, 0)
.
For example:
# The main diagonal.
input = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4)
[7, 7, 7, 7],
[7, 7, 7, 7]],
[[7, 7, 7, 7],
[7, 7, 7, 7],
[7, 7, 7, 7]]])
diagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3)
[4, 5, 6]])
tf.matrix_set_diag(diagonal) ==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4)
[7, 2, 7, 7],
[7, 7, 3, 7]],
[[4, 7, 7, 7],
[7, 5, 7, 7],
[7, 7, 6, 7]]]
# A superdiagonal (per batch).
tf.matrix_set_diag(diagonal, k = 1)
==> [[[7, 1, 7, 7], # Output shape: (2, 3, 4)
[7, 7, 2, 7],
[7, 7, 7, 3]],
[[7, 4, 7, 7],
[7, 7, 5, 7],
[7, 7, 7, 6]]]
# A band of diagonals.
diagonals = np.array([[[1, 2, 3], # Diagonal shape: (2, 2, 3)
[4, 5, 0]],
[[6, 1, 2],
[3, 4, 0]]])
tf.matrix_set_diag(diagonals, k = (-1, 0))
==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4)
[4, 2, 7, 7],
[0, 5, 3, 7]],
[[6, 7, 7, 7],
[3, 1, 7, 7],
[7, 4, 2, 7]]]
Args:
- scope: A Scope object
- input: Rank
r+1
, where r >= 1
.
- diagonal: Rank
r
when k
is an integer or k[0] == k[1]
. Otherwise, it has rank r+1
. k >= 1
.
- k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals.
k
can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. k[0]
must not be larger than k[1]
.
Returns:
Output
: Rank r+1
, with output.shape = input.shape
.
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tensorflow::ops::MatrixSetDiagV2 Class Reference\n\ntensorflow::ops::MatrixSetDiagV2\n================================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a batched matrix tensor with new batched diagonal values.\n\nSummary\n-------\n\nGiven `input` and `diagonal`, this operation returns a tensor with the same shape and values as `input`, except for the specified diagonals of the innermost matrices. These will be overwritten by the values in `diagonal`.\n\n`input` has `r+1` dimensions `[I, J, ..., L, M, N]`. When `k` is scalar or `k[0] == k[1]`, `diagonal` has `r` dimensions `[I, J, ..., L, max_diag_len]`. Otherwise, it has `r+1` dimensions `[I, J, ..., L, num_diags, max_diag_len]`. `num_diags` is the number of diagonals, `num_diags = k[1] - k[0] + 1`. `max_diag_len` is the longest diagonal in the range `[k[0], k[1]]`, `max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))`\n\nThe output is a tensor of rank `k+1` with dimensions `[I, J, ..., L, M, N]`. If `k` is scalar or `k[0] == k[1]`:\n\n\n```text\noutput[i, j, ..., l, m, n]\n = diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1]\n input[i, j, ..., l, m, n] ; otherwise\n```\n\n\u003cbr /\u003e\n\nOtherwise,\n\n\u003cbr /\u003e\n\n```scdoc\noutput[i, j, ..., l, m, n]\n = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] \u003c= d \u003c= k[1]\n input[i, j, ..., l, m, n] ; otherwise\n```\nwhere `d = n - m`, `diag_index = k[1] - d`, and `index_in_diag = n - max(d, 0)`.\n\n\u003cbr /\u003e\n\nFor example:\n\n\n```scdoc\n# The main diagonal.\ninput = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4)\n [7, 7, 7, 7],\n [7, 7, 7, 7]],\n [[7, 7, 7, 7],\n [7, 7, 7, 7],\n [7, 7, 7, 7]]])\ndiagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3)\n [4, 5, 6]])\ntf.matrix_set_diag(diagonal) ==\u003e [[[1, 7, 7, 7], # Output shape: (2, 3, 4)\n [7, 2, 7, 7],\n [7, 7, 3, 7]],\n [[4, 7, 7, 7],\n [7, 5, 7, 7],\n [7, 7, 6, 7]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A superdiagonal (per batch).\ntf.matrix_set_diag(diagonal, k = 1)\n ==\u003e [[[7, 1, 7, 7], # Output shape: (2, 3, 4)\n [7, 7, 2, 7],\n [7, 7, 7, 3]],\n [[7, 4, 7, 7],\n [7, 7, 5, 7],\n [7, 7, 7, 6]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A band of diagonals.\ndiagonals = np.array([[[1, 2, 3], # Diagonal shape: (2, 2, 3)\n [4, 5, 0]],\n [[6, 1, 2],\n [3, 4, 0]]])\ntf.matrix_set_diag(diagonals, k = (-1, 0))\n ==\u003e [[[1, 7, 7, 7], # Output shape: (2, 3, 4)\n [4, 2, 7, 7],\n [0, 5, 3, 7]],\n [[6, 7, 7, 7],\n [3, 1, 7, 7],\n [7, 4, 2, 7]]]\n```\n\n\u003cbr /\u003e\n\n\n```text\n\n```\n\n\u003cbr /\u003e\n\nArgs:\n\n- scope: A [Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Rank `r+1`, where `r \u003e= 1`.\n- diagonal: Rank `r` when `k` is an integer or `k[0] == k[1]`. Otherwise, it has rank `r+1`. `k \u003e= 1`.\n- k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. `k[0]` must not be larger than `k[1]`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Rank `r+1`, with `output.shape = input.shape`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixSetDiagV2](#classtensorflow_1_1ops_1_1_matrix_set_diag_v2_1a438f858712bda6df180ee19d8f278bf4)`(const ::`[tensorflow::Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` diagonal, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` k)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_matrix_set_diag_v2_1a433c91a80772823c3acd4729a873900f) | [Operation](/versions/r2.14/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_matrix_set_diag_v2_1a390fc69019f7170f80f7c4c3acb12cee) | `::`[tensorflow::Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_set_diag_v2_1ab0f95dc9ddcb2221701f55c8caddcdb1)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_set_diag_v2_1a333c742af8203776572da9009d8c0930)`() const ` | |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_set_diag_v2_1a0574bd8260d99f8d93fa3a0cb880f0fa)`() const ` | |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### MatrixSetDiagV2\n\n```gdscript\n MatrixSetDiagV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input diagonal,\n ::tensorflow::Input k\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]