Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: KimlikN
#include <array_ops.h>
Girişle aynı şekil ve içeriğe sahip tensörlerin listesini döndürür.
Özet
tensörler.
Bu işlem, karmaşık işlevler için degradeyi geçersiz kılmak için kullanılabilir. Örneğin, y = f(x) olduğunu varsayalım ve backprop için dx = g(dy) şeklinde özel bir g fonksiyonu uygulamak istiyoruz. Python'da,
with tf.get_default_graph().gradient_override_map(
{'IdentityN': 'OverrideGradientWithG'}):
y, _ = identity_n([f(x), x])
.RegisterGradient('OverrideGradientWithG')
def ApplyG(op, dy, _):
return [None, g(dy)] # Do not backprop to f(x).
Argümanlar:
İade:
-
OutputList
: Çıkış tensörü.
Genel özellikler
Kamu işlevleri
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-27 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::IdentityN Class Reference\n\ntensorflow::ops::IdentityN\n==========================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a list of tensors with the same shapes and contents as the input.\n\nSummary\n-------\n\ntensors.\n\nThis op can be used to override the gradient for complicated functions. For example, suppose y = f(x) and we wish to apply a custom function g for backprop such that dx = g(dy). In Python,\n\n\n```scdoc\nwith tf.get_default_graph().gradient_override_map(\n {'IdentityN': 'OverrideGradientWithG'}):\n y, _ = identity_n([f(x), x])\n```\n\n\u003cbr /\u003e\n\n\n```gas\n.RegisterGradient('OverrideGradientWithG')\ndef ApplyG(op, dy, _):\n return [None, g(dy)] # Do not backprop to f(x).\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- `OutputList`: The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [IdentityN](#classtensorflow_1_1ops_1_1_identity_n_1a6643cba5b78cac36cc7b45f5e6ac03be)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::InputList](/versions/r2.2/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` input)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_identity_n_1aab1042fbd2a1eb89667e580c77cda3db) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_identity_n_1adcada4788c180a31ade058caf543a8ce) | `::`[tensorflow::OutputList](/versions/r2.2/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operator[]](#classtensorflow_1_1ops_1_1_identity_n_1ab03e879700560bb229b66d06d1bccc71)`(size_t index) const ` | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::OutputList output\n``` \n\nPublic functions\n----------------\n\n### IdentityN\n\n```gdscript\n IdentityN(\n const ::tensorflow::Scope & scope,\n ::tensorflow::InputList input\n)\n``` \n\n### operator\\[\\]\n\n```gdscript\n::tensorflow::Output operator[](\n size_t index\n) const \n```"]]