Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: Zemin Modu
#include <math_ops.h>
Bölmenin öğe bazında kalanını döndürür.
Özet
x < 0
x veya y < 0
olduğunda
doğru, bu Python semantiğini takip ediyor, çünkü buradaki sonuç döşeme ayrımıyla tutarlı. Örneğin floor(x / y) * y + mod(x, y) = x
.
NOT : FloorMod
yayını destekler. Burada yayın hakkında daha fazla bilgi
Argümanlar:
İade:
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::FloorMod Class Reference\n\ntensorflow::ops::FloorMod\n=========================\n\n`#include \u003cmath_ops.h\u003e`\n\nReturns element-wise remainder of division.\n\nSummary\n-------\n\nWhen `x \u003c 0` xor `y \u003c 0` is\n\ntrue, this follows Python semantics in that the result here is consistent with a flooring divide. E.g. `floor(x / y) * y + mod(x, y) = x`.\n\n*NOTE* : [FloorMod](/versions/r2.3/api_docs/cc/class/tensorflow/ops/floor-mod#classtensorflow_1_1ops_1_1_floor_mod) supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The z tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [FloorMod](#classtensorflow_1_1ops_1_1_floor_mod_1a34457c7c33286a90d5b2877cf949255a)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` y)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_floor_mod_1a3a085f39f4494b346d655dee742ee76f) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [z](#classtensorflow_1_1ops_1_1_floor_mod_1ac4d9bd96ad307be9f91f52b0aad17227) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_floor_mod_1a76a8f84a099ed7f2172c23952b8e56bc)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_floor_mod_1a40e8c3fb00de30f9b6f361d180336097)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_floor_mod_1ad99a283a5c4fede4a1dd8801952061d2)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### z\n\n```text\n::tensorflow::Output z\n``` \n\nPublic functions\n----------------\n\n### FloorMod\n\n```gdscript\n FloorMod(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x,\n ::tensorflow::Input y\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]