Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::MatrixDiagPartV3
#include <array_ops.h>
Returns the batched diagonal part of a batched tensor.
Summary
Returns a tensor with the k[0]
-th to k[1]
-th diagonals of the batched input
.
Assume input
has r
dimensions [I, J, ..., L, M, N]
. Let max_diag_len
be the maximum length among all diagonals to be extracted, max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))
Let num_diags
be the number of diagonals to extract, num_diags = k[1] - k[0] + 1
.
If num_diags == 1
, the output tensor is of rank r - 1
with shape [I, J, ..., L, max_diag_len]
and values:
diagonal[i, j, ..., l, n]
= input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
padding_value ; otherwise.
where
y = max(-k[1], 0)
,
x = max(k[1], 0)
.
Otherwise, the output tensor has rank r
with dimensions [I, J, ..., L, num_diags, max_diag_len]
with values:
diagonal[i, j, ..., l, m, n]
= input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
padding_value ; otherwise.
where
d = k[1] - m
,
y = max(-d, 0) - offset
, and
x = max(d, 0) - offset
.
offset
is zero except when the alignment of the diagonal is to the right.
offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT}
and `d >= 0`) or
(`align` in {LEFT_RIGHT, RIGHT_RIGHT}
and `d <= 0`)
0 ; otherwise
where
diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))
.
The input must be at least a matrix.
For example:
input = np.array([[[1, 2, 3, 4], # Input shape: (2, 3, 4)
[5, 6, 7, 8],
[9, 8, 7, 6]],
[[5, 4, 3, 2],
[1, 2, 3, 4],
[5, 6, 7, 8]]])
# A main diagonal from each batch.
tf.matrix_diag_part(input) ==> [[1, 6, 7], # Output shape: (2, 3)
[5, 2, 7]]
# A superdiagonal from each batch.
tf.matrix_diag_part(input, k = 1)
==> [[2, 7, 6], # Output shape: (2, 3)
[4, 3, 8]]
# A band from each batch.
tf.matrix_diag_part(input, k = (-1, 2))
==> [[[0, 3, 8], # Output shape: (2, 4, 3)
[2, 7, 6],
[1, 6, 7],
[5, 8, 0]],
[[0, 3, 4],
[4, 3, 8],
[5, 2, 7],
[1, 6, 0]]]
# LEFT_RIGHT alignment.
tf.matrix_diag_part(input, k = (-1, 2), align="LEFT_RIGHT")
==> [[[3, 8, 0], # Output shape: (2, 4, 3)
[2, 7, 6],
[1, 6, 7],
[0, 5, 8]],
[[3, 4, 0],
[4, 3, 8],
[5, 2, 7],
[0, 1, 6]]]
# max_diag_len can be shorter than the main diagonal.
tf.matrix_diag_part(input, k = (-2, -1))
==> [[[5, 8],
[9, 0]],
[[1, 6],
[5, 0]]]
# padding_value = 9
tf.matrix_diag_part(input, k = (1, 3), padding_value = 9)
==> [[[9, 9, 4], # Output shape: (2, 3, 3)
[9, 3, 8],
[2, 7, 6]],
[[9, 9, 2],
[9, 3, 4],
[4, 3, 8]]]
Args:
- scope: A Scope object
- input: Rank
r
tensor where r >= 2
.
- k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals.
k
can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. k[0]
must not be larger than k[1]
.
- padding_value: The value to fill the area outside the specified diagonal band with. Default is 0.
Optional attributes (see Attrs
):
- align: Some diagonals are shorter than
max_diag_len
and need to be padded. align
is a string specifying how superdiagonals and subdiagonals should be aligned, respectively. There are four possible alignments: "RIGHT_LEFT" (default), "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT" aligns superdiagonals to the right (left-pads the row) and subdiagonals to the left (right-pads the row). It is the packing format LAPACK uses. cuSPARSE uses "LEFT_RIGHT", which is the opposite alignment.
Returns:
Output
: The extracted diagonal(s).
Public static functions
|
Align(StringPiece x)
|
|
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
Align
Attrs Align(
StringPiece x
)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-11-15 UTC.
[null,null,["Last updated 2021-11-15 UTC."],[],[],null,["# tensorflow::ops::MatrixDiagPartV3 Class Reference\n\ntensorflow::ops::MatrixDiagPartV3\n=================================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns the batched diagonal part of a batched tensor.\n\nSummary\n-------\n\nReturns a tensor with the `k[0]`-th to `k[1]`-th diagonals of the batched `input`.\n\nAssume `input` has `r` dimensions `[I, J, ..., L, M, N]`. Let `max_diag_len` be the maximum length among all diagonals to be extracted, `max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))` Let `num_diags` be the number of diagonals to extract, `num_diags = k[1] - k[0] + 1`.\n\nIf `num_diags == 1`, the output tensor is of rank `r - 1` with shape `[I, J, ..., L, max_diag_len]` and values:\n\n\u003cbr /\u003e\n\n```scdoc\ndiagonal[i, j, ..., l, n]\n = input[i, j, ..., l, n+y, n+x] ; if 0 \u003c= n+y \u003c M and 0 \u003c= n+x \u003c N,\n padding_value ; otherwise.\n```\nwhere `y = max(-k[1], 0)`, `x = max(k[1], 0)`.\n\n\u003cbr /\u003e\n\nOtherwise, the output tensor has rank `r` with dimensions `[I, J, ..., L, num_diags, max_diag_len]` with values:\n\n\u003cbr /\u003e\n\n```scdoc\ndiagonal[i, j, ..., l, m, n]\n = input[i, j, ..., l, n+y, n+x] ; if 0 \u003c= n+y \u003c M and 0 \u003c= n+x \u003c N,\n padding_value ; otherwise.\n```\nwhere `d = k[1] - m`, `y = max(-d, 0) - offset`, and `x = max(d, 0) - offset`.\n\n\u003cbr /\u003e\n\n`offset` is zero except when the alignment of the diagonal is to the right. \n\n```mysql\noffset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT}\n and `d \u003e= 0`) or\n (`align` in {LEFT_RIGHT, RIGHT_RIGHT}\n and `d \u003c= 0`)\n 0 ; otherwise\n```\nwhere `diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))`.\n\n\u003cbr /\u003e\n\nThe input must be at least a matrix.\n\nFor example:\n\n\n```text\ninput = np.array([[[1, 2, 3, 4], # Input shape: (2, 3, 4)\n [5, 6, 7, 8],\n [9, 8, 7, 6]],\n [[5, 4, 3, 2],\n [1, 2, 3, 4],\n [5, 6, 7, 8]]])\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A main diagonal from each batch.\ntf.matrix_diag_part(input) ==\u003e [[1, 6, 7], # Output shape: (2, 3)\n [5, 2, 7]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A superdiagonal from each batch.\ntf.matrix_diag_part(input, k = 1)\n ==\u003e [[2, 7, 6], # Output shape: (2, 3)\n [4, 3, 8]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A band from each batch.\ntf.matrix_diag_part(input, k = (-1, 2))\n ==\u003e [[[0, 3, 8], # Output shape: (2, 4, 3)\n [2, 7, 6],\n [1, 6, 7],\n [5, 8, 0]],\n [[0, 3, 4],\n [4, 3, 8],\n [5, 2, 7],\n [1, 6, 0]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# LEFT_RIGHT alignment.\ntf.matrix_diag_part(input, k = (-1, 2), align=\"LEFT_RIGHT\")\n ==\u003e [[[3, 8, 0], # Output shape: (2, 4, 3)\n [2, 7, 6],\n [1, 6, 7],\n [0, 5, 8]],\n [[3, 4, 0],\n [4, 3, 8],\n [5, 2, 7],\n [0, 1, 6]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# max_diag_len can be shorter than the main diagonal.\ntf.matrix_diag_part(input, k = (-2, -1))\n ==\u003e [[[5, 8],\n [9, 0]],\n [[1, 6],\n [5, 0]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# padding_value = 9\ntf.matrix_diag_part(input, k = (1, 3), padding_value = 9)\n ==\u003e [[[9, 9, 4], # Output shape: (2, 3, 3)\n [9, 3, 8],\n [2, 7, 6]],\n [[9, 9, 2],\n [9, 3, 4],\n [4, 3, 8]]]\n```\n\n\u003cbr /\u003e\n\n\n```text\n\n```\n\n\u003cbr /\u003e\n\nArgs:\n\n- scope: A [Scope](/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Rank `r` tensor where `r \u003e= 2`.\n- k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. `k[0]` must not be larger than `k[1]`.\n- padding_value: The value to fill the area outside the specified diagonal band with. Default is 0.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/api_docs/cc/struct/tensorflow/ops/matrix-diag-part-v3/attrs#structtensorflow_1_1ops_1_1_matrix_diag_part_v3_1_1_attrs)):\n\n- align: Some diagonals are shorter than `max_diag_len` and need to be padded. `align` is a string specifying how superdiagonals and subdiagonals should be aligned, respectively. There are four possible alignments: \"RIGHT_LEFT\" (default), \"LEFT_RIGHT\", \"LEFT_LEFT\", and \"RIGHT_RIGHT\". \"RIGHT_LEFT\" aligns superdiagonals to the right (left-pads the row) and subdiagonals to the left (right-pads the row). It is the packing format LAPACK uses. cuSPARSE uses \"LEFT_RIGHT\", which is the opposite alignment.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The extracted diagonal(s).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixDiagPartV3](#classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1abda51edecba9f012bd9118b2b4e4eb39)`(const ::`[tensorflow::Scope](/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` k, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` padding_value)` ||\n| [MatrixDiagPartV3](#classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1ab2a7181a88ac68c2c1f8aa8e54d94f36)`(const ::`[tensorflow::Scope](/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` k, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` padding_value, const `[MatrixDiagPartV3::Attrs](/api_docs/cc/struct/tensorflow/ops/matrix-diag-part-v3/attrs#structtensorflow_1_1ops_1_1_matrix_diag_part_v3_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|\n| [diagonal](#classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1ab5b1ebb490b4c3ac451095ad9c2860ce) | `::`[tensorflow::Output](/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1aab8e9d1b13b2fafd7954d2acc89077f3) | [Operation](/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1a42ebd82d85100f3cae0b90acce7c7d41)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1a077796bdba19bb0c51a49a758b47b2f7)`() const ` | |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1aad6d6537777dd1424e046801937d308c)`() const ` | |\n\n| ### Public static functions ||\n|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|\n| [Align](#classtensorflow_1_1ops_1_1_matrix_diag_part_v3_1a2bd0085f20db6aaa612f12494bfd9c6e)`(StringPiece x)` | [Attrs](/api_docs/cc/struct/tensorflow/ops/matrix-diag-part-v3/attrs#structtensorflow_1_1ops_1_1_matrix_diag_part_v3_1_1_attrs) |\n\n| ### Structs ||\n|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::MatrixDiagPartV3::Attrs](/api_docs/cc/struct/tensorflow/ops/matrix-diag-part-v3/attrs) | Optional attribute setters for [MatrixDiagPartV3](/api_docs/cc/class/tensorflow/ops/matrix-diag-part-v3#classtensorflow_1_1ops_1_1_matrix_diag_part_v3). |\n\nPublic attributes\n-----------------\n\n### diagonal\n\n```text\n::tensorflow::Output diagonal\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### MatrixDiagPartV3\n\n```gdscript\n MatrixDiagPartV3(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input k,\n ::tensorflow::Input padding_value\n)\n``` \n\n### MatrixDiagPartV3\n\n```gdscript\n MatrixDiagPartV3(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input k,\n ::tensorflow::Input padding_value,\n const MatrixDiagPartV3::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### Align\n\n```text\nAttrs Align(\n StringPiece x\n)\n```"]]