Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
dòng chảy căng:: ôi:: Cắt và thay đổi kích thước hình ảnh Grad
#include <image_ops.h>
Tính toán độ dốc của crop_and_resize khi ghi tenxơ hình ảnh đầu vào.
Bản tóm tắt
Lập luận:
- phạm vi: Một đối tượng Phạm vi
- cấp độ: Một tensor 4-D có hình dạng
[num_boxes, crop_height, crop_width, depth]
. - hộp: Một tensor 2-D có hình dạng
[num_boxes, 4]
. Hàng thứ i
của tensor chỉ định tọa độ của một hộp trong hình ảnh box_ind[i]
và được chỉ định theo tọa độ chuẩn hóa [y1, x1, y2, x2]
. Giá trị tọa độ chuẩn hóa của y
được ánh xạ tới tọa độ hình ảnh tại y * (image_height - 1)
, do đó khoảng [0, 1]
của chiều cao hình ảnh chuẩn hóa được ánh xạ tới `[0, image_height - 1] trong tọa độ chiều cao hình ảnh. Chúng tôi cho phép y1 > y2, trong trường hợp đó phần cắt được lấy mẫu là phiên bản lật lên xuống của ảnh gốc. Kích thước chiều rộng được xử lý tương tự. Cho phép tọa độ chuẩn hóa bên ngoài phạm vi [0, 1]
, trong trường hợp đó chúng tôi sử dụng extrapolation_value
để ngoại suy các giá trị hình ảnh đầu vào. - box_ind: Một tensor 1-D có hình dạng
[num_boxes]
với các giá trị int32 trong [0, batch)
. Giá trị của box_ind[i]
chỉ định hình ảnh mà hộp i
đề cập đến. - image_size: Tenxor 1-D có giá trị
[batch, image_height, image_width, depth]
chứa kích thước hình ảnh gốc. Cả image_height
và image_width
đều phải dương.
Thuộc tính tùy chọn (xem Attrs
):
- phương thức: Một chuỗi chỉ định phương thức nội suy. Hiện tại chỉ hỗ trợ 'song tuyến tính'.
Trả về:
-
Output
: Một tensor 4-D có hình dạng [batch, image_height, image_width, depth]
.
Hàm tạo và hàm hủy |
---|
CropAndResizeGradImage (const :: tensorflow::Scope & scope, :: tensorflow::Input grads, :: tensorflow::Input boxes, :: tensorflow::Input box_ind, :: tensorflow::Input image_size, DataType T)
|
CropAndResizeGradImage (const :: tensorflow::Scope & scope, :: tensorflow::Input grads, :: tensorflow::Input boxes, :: tensorflow::Input box_ind, :: tensorflow::Input image_size, DataType T, const CropAndResizeGradImage::Attrs & attrs) |
Các hàm tĩnh công khai |
---|
Method (StringPiece x) | |
Thuộc tính công khai
Chức năng công cộng
nút
::tensorflow::Node * node() const
operator::tensorflow::Input() const
toán tử::tenorflow::Đầu ra
operator::tensorflow::Output() const
Các hàm tĩnh công khai
Phương pháp
Attrs Method(
StringPiece x
)
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-26 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::CropAndResizeGradImage Class Reference\n\ntensorflow::ops::CropAndResizeGradImage\n=======================================\n\n`#include \u003cimage_ops.h\u003e`\n\nComputes the gradient of the crop_and_resize op wrt the input image tensor.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- grads: A 4-D tensor of shape `[num_boxes, crop_height, crop_width, depth]`.\n- boxes: A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensor specifies the coordinates of a box in the `box_ind[i]` image and is specified in normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image height is mapped to \\`\\[0, image_height - 1\\] in image height coordinates. We do allow y1 \\\u003e y2, in which case the sampled crop is an up-down flipped version of the original image. The width dimension is treated similarly. Normalized coordinates outside the `[0, 1]` range are allowed, in which case we use `extrapolation_value` to extrapolate the input image values.\n- box_ind: A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`. The value of `box_ind[i]` specifies the image that the `i`-th box refers to.\n- image_size: A 1-D tensor with value `[batch, image_height, image_width, depth]` containing the original image size. Both `image_height` and `image_width` need to be positive.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-image/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1_1_attrs)):\n\n- method: A string specifying the interpolation method. Only 'bilinear' is supported for now.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A 4-D tensor of shape `[batch, image_height, image_width, depth]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [CropAndResizeGradImage](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a542871b76c83a2a8ae095c5ade81ab0e)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grads, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` boxes, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` box_ind, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` image_size, DataType T)` ||\n| [CropAndResizeGradImage](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a5314c519439a0018be03ae0599c320d3)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grads, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` boxes, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` box_ind, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` image_size, DataType T, const `[CropAndResizeGradImage::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-image/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1ad757af122f700a9ab5acbd38629f83fb) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1adc227b21eb0d9d4ca672f34f67b7943d) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a614b37524e5b31e34837f59518d54830)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a561ea8804d44d30b5d50d84b6619a89c)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a189d45da47ace193a132f998417286d2)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Method](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a10a7af8fef715e541d4c1c1472871fa5)`(StringPiece x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-image/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1_1_attrs) |\n\n| ### Structs ||\n|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::CropAndResizeGradImage::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-image/attrs) | Optional attribute setters for [CropAndResizeGradImage](/versions/r1.15/api_docs/cc/class/tensorflow/ops/crop-and-resize-grad-image#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### CropAndResizeGradImage\n\n```gdscript\n CropAndResizeGradImage(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input grads,\n ::tensorflow::Input boxes,\n ::tensorflow::Input box_ind,\n ::tensorflow::Input image_size,\n DataType T\n)\n``` \n\n### CropAndResizeGradImage\n\n```gdscript\n CropAndResizeGradImage(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input grads,\n ::tensorflow::Input boxes,\n ::tensorflow::Input box_ind,\n ::tensorflow::Input image_size,\n DataType T,\n const CropAndResizeGradImage::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### Method\n\n```text\nAttrs Method(\n StringPiece x\n)\n```"]]