সেভ করা পৃষ্ঠা গুছিয়ে রাখতে 'সংগ্রহ' ব্যবহার করুন
আপনার পছন্দ অনুযায়ী কন্টেন্ট সেভ করুন ও সঠিক বিভাগে রাখুন।
টেনসরফ্লো :: অপস:: DeserializeSparse
#include <sparse_ops.h>
SparseTensor
অবজেক্ট ডিসিরিয়ালাইজ করুন।
সারাংশ
ইনপুট serialized_sparse
অবশ্যই আকৃতি [?, ?, ..., ?, 3]
থাকতে হবে যেখানে শেষ মাত্রা SparseTensor
অবজেক্টগুলিকে ক্রমিকভাবে সঞ্চয় করে এবং অন্যান্য N মাত্রাগুলি (N >= 0) একটি ব্যাচের সাথে মিলে যায়। মূল SparseTensor
অবজেক্টের র্যাঙ্ক অবশ্যই সব মিলে যাবে। যখন চূড়ান্ত SparseTensor
তৈরি করা হয়, তখন এর র্যাঙ্ক হল ইনকামিং SparseTensor
অবজেক্ট প্লাস N এর র্যাঙ্ক; স্পার্স টেনসরগুলিকে নতুন মাত্রার সাথে সংযুক্ত করা হয়েছে, প্রতিটি ব্যাচের জন্য একটি।
মূল মাত্রার জন্য আউটপুট SparseTensor
অবজেক্টের আকৃতি মানগুলি সংশ্লিষ্ট মাত্রাগুলির জন্য ইনপুট SparseTensor
অবজেক্টের আকৃতির মান জুড়ে সর্বাধিক। নতুন মাত্রা ব্যাচের আকারের সাথে মেলে।
ইনপুট SparseTensor
অবজেক্টের সূচকগুলিকে আদর্শ লেক্সিকোগ্রাফিক ক্রমানুসারে অনুমান করা হয়। যদি এটি না হয়, এই ধাপের পরে সূচী ক্রম পুনরুদ্ধার করতে SparseReorder
চালান।
উদাহরণস্বরূপ, যদি ক্রমিক ইনপুট একটি [2 x 3]
ম্যাট্রিক্স হয় যা দুটি মূল SparseTensor
বস্তুর প্রতিনিধিত্ব করে:
index = [ 0]
[10]
[20]
values = [1, 2, 3]
shape = [50]
এবং
index = [ 2]
[10]
values = [4, 5]
shape = [30]
তারপর চূড়ান্ত ডিসিরিয়ালাইজড SparseTensor
হবে:
index = [0 0]
[0 10]
[0 20]
[1 2]
[1 10]
values = [1, 2, 3, 4, 5]
shape = [2 50]
যুক্তি:
- স্কোপ: একটি স্কোপ অবজেক্ট
- serialized_sparse: সিরিয়ালাইজড
SparseTensor
অবজেক্ট। শেষ মাত্রায় অবশ্যই 3টি কলাম থাকতে হবে। - dtype: ক্রমানুসারে
SparseTensor
অবজেক্টের dtype
।
রিটার্ন:
পাবলিক বৈশিষ্ট্য
পাবলিক ফাংশন
অন্য কিছু উল্লেখ না করা থাকলে, এই পৃষ্ঠার কন্টেন্ট Creative Commons Attribution 4.0 License-এর অধীনে এবং কোডের নমুনাগুলি Apache 2.0 License-এর অধীনে লাইসেন্স প্রাপ্ত। আরও জানতে, Google Developers সাইট নীতি দেখুন। Java হল Oracle এবং/অথবা তার অ্যাফিলিয়েট সংস্থার রেজিস্টার্ড ট্রেডমার্ক।
2025-07-26 UTC-তে শেষবার আপডেট করা হয়েছে।
[null,null,["2025-07-26 UTC-তে শেষবার আপডেট করা হয়েছে।"],[],[],null,["# tensorflow::ops::DeserializeSparse Class Reference\n\ntensorflow::ops::DeserializeSparse\n==================================\n\n`#include \u003csparse_ops.h\u003e`\n\nDeserialize `SparseTensor` objects.\n\nSummary\n-------\n\nThe input `serialized_sparse` must have the shape `[?, ?, ..., ?, 3]` where the last dimension stores serialized `SparseTensor` objects and the other N dimensions (N \\\u003e= 0) correspond to a batch. The ranks of the original `SparseTensor` objects must all match. When the final `SparseTensor` is created, its rank is the rank of the incoming `SparseTensor` objects plus N; the sparse tensors have been concatenated along new dimensions, one for each batch.\n\nThe output `SparseTensor` object's shape values for the original dimensions are the max across the input `SparseTensor` objects' shape values for the corresponding dimensions. The new dimensions match the size of the batch.\n\nThe input `SparseTensor` objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run [SparseReorder](/versions/r1.15/api_docs/cc/class/tensorflow/ops/sparse-reorder#classtensorflow_1_1ops_1_1_sparse_reorder) to restore index ordering.\n\nFor example, if the serialized input is a `[2 x 3]` matrix representing two original `SparseTensor` objects: \n\n```text\nindex = [ 0]\n [10]\n [20]\nvalues = [1, 2, 3]\nshape = [50]\n```\n\n\u003cbr /\u003e\n\nand \n\n```text\nindex = [ 2]\n [10]\nvalues = [4, 5]\nshape = [30]\n```\n\n\u003cbr /\u003e\n\nthen the final deserialized `SparseTensor` will be: \n\n```text\nindex = [0 0]\n [0 10]\n [0 20]\n [1 2]\n [1 10]\nvalues = [1, 2, 3, 4, 5]\nshape = [2 50]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- serialized_sparse: The serialized `SparseTensor` objects. The last dimension must have 3 columns.\n- dtype: The `dtype` of the serialized `SparseTensor` objects.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_indices\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_values\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_shape\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [DeserializeSparse](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a023794d9b956960ff8d7189e5e3feec5)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` serialized_sparse, DataType dtype)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_deserialize_sparse_1abdd692db872e045ede9e84be66b35bc3) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [sparse_indices](#classtensorflow_1_1ops_1_1_deserialize_sparse_1acdaf19772a1be03384f76ac4e07f6aaf) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [sparse_shape](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a86bbd4ffa415bb68db5fa2f1e76e7de5) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [sparse_values](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a303201bfe16885e2cef2b115049d005e) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### sparse_indices\n\n```scdoc\n::tensorflow::Output sparse_indices\n``` \n\n### sparse_shape\n\n```scdoc\n::tensorflow::Output sparse_shape\n``` \n\n### sparse_values\n\n```scdoc\n::tensorflow::Output sparse_values\n``` \n\nPublic functions\n----------------\n\n### DeserializeSparse\n\n```gdscript\n DeserializeSparse(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input serialized_sparse,\n DataType dtype\n)\n```"]]