جریان تنسور:: عملیات:: MatrixDiagPart
#include <array_ops.h>
قسمت مورب دسته بندی شده یک تانسور دسته ای را برمی گرداند.
خلاصه
این عملیات یک تانسور را با قسمت diagonal
input
دسته ای برمی گرداند. قسمت diagonal
به صورت زیر محاسبه می شود:
فرض کنید input
k
ابعاد دارد [I, J, K, ..., M, N]
، سپس خروجی یک تانسور از رتبه k - 1
با ابعاد [I, J, K, ..., min(M, N)]
جایی که:
diagonal[i, j, k, ..., n] = input[i, j, k, ..., n, n]
.
ورودی باید حداقل یک ماتریس باشد.
به عنوان مثال:
# 'input' is [[[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]],
[[5, 0, 0, 0]
[0, 6, 0, 0]
[0, 0, 7, 0]
[0, 0, 0, 8]]]
and input.shape = (2, 4, 4)
tf.matrix_diag_part(input) ==> [[1, 2, 3, 4], [5, 6, 7, 8]]
which has shape (2, 4)
استدلال ها:
- scope: یک شی Scope
- ورودی: رتبه
k
تانسور که در آن k >= 2
.
برمیگرداند:
-
Output
: قطر(های) استخراج شده دارای شکل diagonal.shape = input.shape[:-2] + [min(input.shape[-2:])]
.
صفات عمومی
مورب
::tensorflow::Output diagonal
عملیات
Operation operation
توابع عمومی
MatrixDiagPart
MatrixDiagPart(
const ::tensorflow::Scope & scope,
::tensorflow::Input input
)
گره
::tensorflow::Node * node() const
operator::tensorflow::Input() const
عملگر::tensorflow::خروجی
operator::tensorflow::Output() const
جز در مواردی که غیر از این ذکر شده باشد،محتوای این صفحه تحت مجوز Creative Commons Attribution 4.0 License است. نمونه کدها نیز دارای مجوز Apache 2.0 License است. برای اطلاع از جزئیات، به خطمشیهای سایت Google Developers مراجعه کنید. جاوا علامت تجاری ثبتشده Oracle و/یا شرکتهای وابسته به آن است.
تاریخ آخرین بهروزرسانی 2025-07-26 بهوقت ساعت هماهنگ جهانی.
[null,null,["تاریخ آخرین بهروزرسانی 2025-07-26 بهوقت ساعت هماهنگ جهانی."],[],[],null,["# tensorflow::ops::MatrixDiagPart Class Reference\n\ntensorflow::ops::MatrixDiagPart\n===============================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns the batched diagonal part of a batched tensor.\n\nSummary\n-------\n\nThis operation returns a tensor with the `diagonal` part of the batched `input`. The `diagonal` part is computed as follows:\n\nAssume `input` has `k` dimensions `[I, J, K, ..., M, N]`, then the output is a tensor of rank `k - 1` with dimensions `[I, J, K, ..., min(M, N)]` where:\n\n`diagonal[i, j, k, ..., n] = input[i, j, k, ..., n, n]`.\n\nThe input must be at least a matrix.\n\nFor example:\n\n\n```text\n# 'input' is [[[1, 0, 0, 0]\n [0, 2, 0, 0]\n [0, 0, 3, 0]\n [0, 0, 0, 4]],\n [[5, 0, 0, 0]\n [0, 6, 0, 0]\n [0, 0, 7, 0]\n [0, 0, 0, 8]]]\n```\n\n\u003cbr /\u003e\n\n\n```text\nand input.shape = (2, 4, 4)\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\ntf.matrix_diag_part(input) ==\u003e [[1, 2, 3, 4], [5, 6, 7, 8]]\n```\n\n\u003cbr /\u003e\n\n\n```perl6\nwhich has shape (2, 4)\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Rank `k` tensor where `k \u003e= 2`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The extracted diagonal(s) having shape `diagonal.shape = input.shape[:-2] + [min(input.shape[-2:])]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixDiagPart](#classtensorflow_1_1ops_1_1_matrix_diag_part_1a2ff08591126639a356e8ddb7b1bbe901)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [diagonal](#classtensorflow_1_1ops_1_1_matrix_diag_part_1aefc6c0270b1e5a8ecca5253aa3197301) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_matrix_diag_part_1a2ee7a3d61dc294c15227bb4a4fd796fb) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_diag_part_1a6310cbc4148604ca613410d6d3f6794e)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_diag_part_1ab168eaa21921f9a0ff6ca197fbbbd8da)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_diag_part_1a6ac92f6b3dfd62c3ef3c08777c62d543)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### diagonal\n\n```text\n::tensorflow::Output diagonal\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### MatrixDiagPart\n\n```gdscript\n MatrixDiagPart(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]