Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
dòng chảy căng:: ôi:: Ngẫu nhiênGamma
#include <random_ops.h>
Xuất các giá trị ngẫu nhiên từ (các) phân bố Gamma được mô tả bằng alpha.
Bản tóm tắt
Hoạt động này sử dụng thuật toán của Marsaglia et al. để thu được các mẫu thông qua phép biến đổi-loại bỏ từ các cặp biến ngẫu nhiên thống nhất và thông thường. Xem http://dl.acm.org/cite.cfm?id=358414
Lập luận:
- phạm vi: Một đối tượng phạm vi
- hình dạng: tensor số nguyên 1-D. Hình dạng của các mẫu độc lập được rút ra từ mỗi phân bố được mô tả bằng các tham số hình dạng được cho ở dạng alpha.
- alpha: Một tenxơ trong đó mỗi đại lượng vô hướng là một tham số "hình dạng" mô tả phân bố gamma liên quan.
Thuộc tính tùy chọn (xem Attrs
):
- hạt giống: Nếu
seed
hoặc seed2
được đặt khác 0, bộ tạo số ngẫu nhiên sẽ được gieo hạt giống đã cho. Nếu không, nó sẽ được gieo bởi một hạt giống ngẫu nhiên. - Seed2: Hạt giống thứ hai để tránh va chạm hạt giống.
Trả về:
-
Output
: Một tensor có shape + shape(alpha)
. Mỗi lát [:, ..., :, i0, i1, ...iN]
chứa các mẫu được vẽ cho alpha[i0, i1, ...iN]
. Dtype của đầu ra khớp với dtype của alpha.
Các hàm tĩnh công khai |
---|
Seed (int64 x) | |
Seed2 (int64 x) | |
Thuộc tính công khai
Chức năng công cộng
nút
::tensorflow::Node * node() const
operator::tensorflow::Input() const
toán tử::tenorflow::Đầu ra
operator::tensorflow::Output() const
Các hàm tĩnh công khai
Hạt giống
Attrs Seed(
int64 x
)
Hạt giống2
Attrs Seed2(
int64 x
)
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-26 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::RandomGamma Class Reference\n\ntensorflow::ops::RandomGamma\n============================\n\n`#include \u003crandom_ops.h\u003e`\n\nOutputs random values from the Gamma distribution(s) described by alpha.\n\nSummary\n-------\n\nThis op uses the algorithm by Marsaglia et al. to acquire samples via transformation-rejection from pairs of uniform and normal random variables. See \u003chttp://dl.acm.org/citation.cfm?id=358414\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- shape: 1-D integer tensor. Shape of independent samples to draw from each distribution described by the shape parameters given in alpha.\n- alpha: A tensor in which each scalar is a \"shape\" parameter describing the associated gamma distribution.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs#structtensorflow_1_1ops_1_1_random_gamma_1_1_attrs)):\n\n- seed: If either `seed` or `seed2` are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed.\n- seed2: A second seed to avoid seed collision.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A tensor with shape `shape + shape(alpha)`. Each slice `[:, ..., :, i0, i1, ...iN]` contains the samples drawn for `alpha[i0, i1, ...iN]`. The dtype of the output matches the dtype of alpha.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [RandomGamma](#classtensorflow_1_1ops_1_1_random_gamma_1a54b3819de158eaa8e1f4dd2e09c38350)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` alpha)` ||\n| [RandomGamma](#classtensorflow_1_1ops_1_1_random_gamma_1afb5a4dcc9f3b7849c9ccf8e49233c658)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` alpha, const `[RandomGamma::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs#structtensorflow_1_1ops_1_1_random_gamma_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_random_gamma_1a3442325c98888cd41398f85c8dc7215d) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_random_gamma_1ae108904c41339fe8cced748589ef2622) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_random_gamma_1a0a8429580ed9eda5d1b850c9fc9cd7c6)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_random_gamma_1ad5e60091b7438c54f6d2457fccba06ed)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_random_gamma_1a20b55a813e49ae84f48cd79c87285409)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|\n| [Seed](#classtensorflow_1_1ops_1_1_random_gamma_1a62800c601cb18e766b0f41f18f86f335)`(int64 x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs#structtensorflow_1_1ops_1_1_random_gamma_1_1_attrs) |\n| [Seed2](#classtensorflow_1_1ops_1_1_random_gamma_1a42984b9ff3911c8867903be5bcd97ac7)`(int64 x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs#structtensorflow_1_1ops_1_1_random_gamma_1_1_attrs) |\n\n| ### Structs ||\n|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::RandomGamma::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs) | Optional attribute setters for [RandomGamma](/versions/r1.15/api_docs/cc/class/tensorflow/ops/random-gamma#classtensorflow_1_1ops_1_1_random_gamma). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### RandomGamma\n\n```gdscript\n RandomGamma(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input shape,\n ::tensorflow::Input alpha\n)\n``` \n\n### RandomGamma\n\n```gdscript\n RandomGamma(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input shape,\n ::tensorflow::Input alpha,\n const RandomGamma::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### Seed\n\n```text\nAttrs Seed(\n int64 x\n)\n``` \n\n### Seed2\n\n```text\nAttrs Seed2(\n int64 x\n)\n```"]]