সেভ করা পৃষ্ঠা গুছিয়ে রাখতে 'সংগ্রহ' ব্যবহার করুন
আপনার পছন্দ অনুযায়ী কন্টেন্ট সেভ করুন ও সঠিক বিভাগে রাখুন।
টেনসরফ্লো :: অপস:: রিসোর্স এ্যাডম
#include <training_ops.h>
অ্যাডাম অ্যালগরিদম অনুযায়ী '*var' আপডেট করুন।
সারাংশ
$$lr_t := {learning_rate} * {1 - beta_2^t} / (1 - beta_1^t)$$ $$m_t := beta_1 * m_{t-1} + (1 - beta_1) * g$$ $$v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g$$ $$variable := variable - lr_t * m_t / ({v_t} + )$$
যুক্তি:
- স্কোপ: একটি স্কোপ অবজেক্ট
- var: একটি পরিবর্তনশীল() থেকে হওয়া উচিত।
- m: একটি পরিবর্তনশীল() থেকে হওয়া উচিত।
- v: একটি পরিবর্তনশীল() থেকে হতে হবে।
- beta1_power: একটি স্কেলার হতে হবে।
- beta2_power: একটি স্কেলার হতে হবে।
- lr: স্কেলিং ফ্যাক্টর। একটি স্কেলার হতে হবে।
- beta1: মোমেন্টাম ফ্যাক্টর। একটি স্কেলার হতে হবে।
- beta2: মোমেন্টাম ফ্যাক্টর। একটি স্কেলার হতে হবে।
- epsilon: রিজ শব্দ। একটি স্কেলার হতে হবে।
- grad: গ্রেডিয়েন্ট।
ঐচ্ছিক বৈশিষ্ট্য (দেখুন Attrs
):
- use_locking: যদি
True
, var, m, এবং v টেনসর আপডেট করা একটি লক দ্বারা সুরক্ষিত হবে; অন্যথায় আচরণটি অনির্ধারিত, তবে কম বিরোধ প্রদর্শন করতে পারে। - use_nesterov:
True
হলে, nesterov আপডেট ব্যবহার করে।
রিটার্ন:
কনস্ট্রাক্টর এবং ডেস্ট্রাক্টর |
---|
ResourceApplyAdam (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input m, :: tensorflow::Input v, :: tensorflow::Input beta1_power, :: tensorflow::Input beta2_power, :: tensorflow::Input lr, :: tensorflow::Input beta1, :: tensorflow::Input beta2, :: tensorflow::Input epsilon, :: tensorflow::Input grad)
|
ResourceApplyAdam (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input m, :: tensorflow::Input v, :: tensorflow::Input beta1_power, :: tensorflow::Input beta2_power, :: tensorflow::Input lr, :: tensorflow::Input beta1, :: tensorflow::Input beta2, :: tensorflow::Input epsilon, :: tensorflow::Input grad, const ResourceApplyAdam::Attrs & attrs) |
পাবলিক বৈশিষ্ট্য
পাবলিক ফাংশন
রিসোর্স এ্যাডম
ResourceApplyAdam(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input m,
::tensorflow::Input v,
::tensorflow::Input beta1_power,
::tensorflow::Input beta2_power,
::tensorflow::Input lr,
::tensorflow::Input beta1,
::tensorflow::Input beta2,
::tensorflow::Input epsilon,
::tensorflow::Input grad
)
রিসোর্স এ্যাডম
ResourceApplyAdam(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input m,
::tensorflow::Input v,
::tensorflow::Input beta1_power,
::tensorflow::Input beta2_power,
::tensorflow::Input lr,
::tensorflow::Input beta1,
::tensorflow::Input beta2,
::tensorflow::Input epsilon,
::tensorflow::Input grad,
const ResourceApplyAdam::Attrs & attrs
)
অপারেটর::টেনসরফ্লো::অপারেশন
operator::tensorflow::Operation() const
পাবলিক স্ট্যাটিক ফাংশন
লকিং ব্যবহার করুন
Attrs UseLocking(
bool x
)
নেস্টেরভ ব্যবহার করুন
Attrs UseNesterov(
bool x
)
অন্য কিছু উল্লেখ না করা থাকলে, এই পৃষ্ঠার কন্টেন্ট Creative Commons Attribution 4.0 License-এর অধীনে এবং কোডের নমুনাগুলি Apache 2.0 License-এর অধীনে লাইসেন্স প্রাপ্ত। আরও জানতে, Google Developers সাইট নীতি দেখুন। Java হল Oracle এবং/অথবা তার অ্যাফিলিয়েট সংস্থার রেজিস্টার্ড ট্রেডমার্ক।
2025-07-29 UTC-তে শেষবার আপডেট করা হয়েছে।
[null,null,["2025-07-29 UTC-তে শেষবার আপডেট করা হয়েছে।"],[],[],null,["# tensorflow::ops::ResourceApplyAdam Class Reference\n\ntensorflow::ops::ResourceApplyAdam\n==================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the Adam algorithm.\n\nSummary\n-------\n\n$$lr_t := {learning_rate} \\* {1 - beta_2\\^t} / (1 - beta_1\\^t)$$ $$m_t := beta_1 \\* m_{t-1} + (1 - beta_1) \\* g$$ $$v_t := beta_2 \\* v_{t-1} + (1 - beta_2) \\* g \\* g$$ $$variable := variable - lr_t \\* m_t / ({v_t} + )$$\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- m: Should be from a Variable().\n- v: Should be from a Variable().\n- beta1_power: Must be a scalar.\n- beta2_power: Must be a scalar.\n- lr: Scaling factor. Must be a scalar.\n- beta1: Momentum factor. Must be a scalar.\n- beta2: Momentum factor. Must be a scalar.\n- epsilon: Ridge term. Must be a scalar.\n- grad: The gradient.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-adam/attrs#structtensorflow_1_1ops_1_1_resource_apply_adam_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var, m, and v tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n- use_nesterov: If `True`, uses the nesterov update.\n\n\u003cbr /\u003e\n\nReturns:\n\n- the created [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation)\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ResourceApplyAdam](#classtensorflow_1_1ops_1_1_resource_apply_adam_1ac795afbdb2b0b71ee2d2de82cc60f117)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta1_power, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta2_power, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta1, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta2, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad)` ||\n| [ResourceApplyAdam](#classtensorflow_1_1ops_1_1_resource_apply_adam_1ab1142d9fee53446380bed6cf6ffc3d16)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta1_power, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta2_power, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta1, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta2, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const `[ResourceApplyAdam::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-adam/attrs#structtensorflow_1_1ops_1_1_resource_apply_adam_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_resource_apply_adam_1aabbba4cd6d62166c77e9ac3da3caa0bd) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------------|---------|\n| [operator::tensorflow::Operation](#classtensorflow_1_1ops_1_1_resource_apply_adam_1aaf87aff51ef168ae2807151dccb08a18)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_resource_apply_adam_1a608016b3becbe65a6899bb3c0d4c1cf4)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-adam/attrs#structtensorflow_1_1ops_1_1_resource_apply_adam_1_1_attrs) |\n| [UseNesterov](#classtensorflow_1_1ops_1_1_resource_apply_adam_1aa7ac09e230c73e3ee869c80a9eef764d)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-adam/attrs#structtensorflow_1_1ops_1_1_resource_apply_adam_1_1_attrs) |\n\n| ### Structs ||\n|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ResourceApplyAdam::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-adam/attrs) | Optional attribute setters for [ResourceApplyAdam](/versions/r1.15/api_docs/cc/class/tensorflow/ops/resource-apply-adam#classtensorflow_1_1ops_1_1_resource_apply_adam). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### ResourceApplyAdam\n\n```gdscript\n ResourceApplyAdam(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input m,\n ::tensorflow::Input v,\n ::tensorflow::Input beta1_power,\n ::tensorflow::Input beta2_power,\n ::tensorflow::Input lr,\n ::tensorflow::Input beta1,\n ::tensorflow::Input beta2,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad\n)\n``` \n\n### ResourceApplyAdam\n\n```gdscript\n ResourceApplyAdam(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input m,\n ::tensorflow::Input v,\n ::tensorflow::Input beta1_power,\n ::tensorflow::Input beta2_power,\n ::tensorflow::Input lr,\n ::tensorflow::Input beta1,\n ::tensorflow::Input beta2,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n const ResourceApplyAdam::Attrs & attrs\n)\n``` \n\n### operator::tensorflow::Operation\n\n```gdscript\n operator::tensorflow::Operation() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n``` \n\n### UseNesterov\n\n```text\nAttrs UseNesterov(\n bool x\n)\n```"]]