সেভ করা পৃষ্ঠা গুছিয়ে রাখতে 'সংগ্রহ' ব্যবহার করুন
আপনার পছন্দ অনুযায়ী কন্টেন্ট সেভ করুন ও সঠিক বিভাগে রাখুন।
টেনসরফ্লো :: অপস:: রিসোর্সঅ্যাপ্লাইআরএমএসপ্রপ
#include <training_ops.h>
RMSProp অ্যালগরিদম অনুযায়ী '*var' আপডেট করুন।
সারাংশ
মনে রাখবেন যে এই অ্যালগরিদমের ঘন বাস্তবায়নে, গ্র্যাড শূন্য হলেও ms এবং mom আপডেট হবে, কিন্তু এই স্পার্স বাস্তবায়নে, ms এবং mom পুনরাবৃত্তিতে আপডেট হবে না যার সময় গ্র্যাড শূন্য।
গড়_বর্গ = ক্ষয় * গড়_বর্গ + (1-ক্ষয়) * গ্রেডিয়েন্ট ** 2 ডেল্টা = লার্নিং_রেট * গ্রেডিয়েন্ট / sqrt (মান_বর্গ + এপসিলন)
ms <- rho * ms_{t-1} + (1-rho) * grad * grad mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) var <- var - মা
যুক্তি:
- স্কোপ: একটি স্কোপ অবজেক্ট
- var: একটি পরিবর্তনশীল() থেকে হওয়া উচিত।
- ms: একটি পরিবর্তনশীল() থেকে হওয়া উচিত।
- মা: একটি পরিবর্তনশীল() থেকে হওয়া উচিত।
- lr: স্কেলিং ফ্যাক্টর। একটি স্কেলার হতে হবে।
- rho: ক্ষয় হার। একটি স্কেলার হতে হবে।
- epsilon: রিজ শব্দ। একটি স্কেলার হতে হবে।
- grad: গ্রেডিয়েন্ট।
ঐচ্ছিক বৈশিষ্ট্য (দেখুন Attrs
):
- use_locking: যদি
True
, var, ms, এবং mom tensors আপডেট করা একটি লক দ্বারা সুরক্ষিত; অন্যথায় আচরণটি অনির্ধারিত, তবে কম বিরোধ প্রদর্শন করতে পারে।
রিটার্ন:
কনস্ট্রাক্টর এবং ডেস্ট্রাক্টর |
---|
ResourceApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad)
|
ResourceApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, const ResourceApplyRMSProp::Attrs & attrs) |
পাবলিক বৈশিষ্ট্য
পাবলিক ফাংশন
অপারেটর::টেনসরফ্লো::অপারেশন
operator::tensorflow::Operation() const
পাবলিক স্ট্যাটিক ফাংশন
লকিং ব্যবহার করুন
Attrs UseLocking(
bool x
)
অন্য কিছু উল্লেখ না করা থাকলে, এই পৃষ্ঠার কন্টেন্ট Creative Commons Attribution 4.0 License-এর অধীনে এবং কোডের নমুনাগুলি Apache 2.0 License-এর অধীনে লাইসেন্স প্রাপ্ত। আরও জানতে, Google Developers সাইট নীতি দেখুন। Java হল Oracle এবং/অথবা তার অ্যাফিলিয়েট সংস্থার রেজিস্টার্ড ট্রেডমার্ক।
2025-07-25 UTC-তে শেষবার আপডেট করা হয়েছে।
[null,null,["2025-07-25 UTC-তে শেষবার আপডেট করা হয়েছে।"],[],[],null,["# tensorflow::ops::ResourceApplyRMSProp Class Reference\n\ntensorflow::ops::ResourceApplyRMSProp\n=====================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the RMSProp algorithm.\n\nSummary\n-------\n\nNote that in dense implementation of this algorithm, ms and mom will update even if the grad is zero, but in this sparse implementation, ms and mom will not update in iterations during which the grad is zero.\n\nmean_square = decay \\* mean_square + (1-decay) \\* gradient \\*\\* 2 Delta = learning_rate \\* gradient / sqrt(mean_square + epsilon)\n\nms \\\u003c- rho \\* ms_{t-1} + (1-rho) \\* grad \\* grad mom \\\u003c- momentum \\* mom_{t-1} + lr \\* grad / sqrt(ms + epsilon) var \\\u003c- var - mom\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- ms: Should be from a Variable().\n- mom: Should be from a Variable().\n- lr: Scaling factor. Must be a scalar.\n- rho: Decay rate. Must be a scalar.\n- epsilon: Ridge term. Must be a scalar.\n- grad: The gradient.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- the created [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation)\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ResourceApplyRMSProp](#classtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1ae91eb1e2b6b3e0c166963715954c5122)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad)` ||\n| [ResourceApplyRMSProp](#classtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1a75df67ab1eea661cf727de50a0a7fb98)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const `[ResourceApplyRMSProp::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1a48b8adc2f5de282222027a49c23ff42d) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------------------|---------|\n| [operator::tensorflow::Operation](#classtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1afe6e89eae46d27e22c2ac94cc2c7aadc)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1aacf915d8791a673d2e19b0af3d86af3a)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1_1_attrs) |\n\n| ### Structs ||\n|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ResourceApplyRMSProp::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-r-m-s-prop/attrs) | Optional attribute setters for [ResourceApplyRMSProp](/versions/r1.15/api_docs/cc/class/tensorflow/ops/resource-apply-r-m-s-prop#classtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### ResourceApplyRMSProp\n\n```gdscript\n ResourceApplyRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad\n)\n``` \n\n### ResourceApplyRMSProp\n\n```gdscript\n ResourceApplyRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n const ResourceApplyRMSProp::Attrs & attrs\n)\n``` \n\n### operator::tensorflow::Operation\n\n```gdscript\n operator::tensorflow::Operation() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]