Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: ResourceSparseApplyCenteredRMSProp
#include <training_ops.h>
Aggiorna '*var' in base all'algoritmo RMSProp centrato.
Riepilogo
L'algoritmo RMSProp centrato utilizza una stima del secondo momento centrato (cioè la varianza) per la normalizzazione, al contrario del normale RMSProp, che utilizza il secondo momento (non centrato). Questo spesso aiuta con la formazione, ma è leggermente più costoso in termini di calcolo e memoria.
Tieni presente che nell'implementazione densa di questo algoritmo, mg, ms e mom verranno aggiornati anche se il grad è zero, ma in questa implementazione sparsa, mg, ms e mom non verranno aggiornati nelle iterazioni durante le quali il grad è zero.
quadrato_medio = decadimento * quadrato_medio + (1 decadimento) * gradiente ** 2 grado_medio = decadimento * grado_medio + (decadimento 1) * gradiente Delta = tasso_di_apprendimento * gradiente / sqrt(quadrato_medio + epsilon - grado_medio ** 2)
ms <- rho * ms_{t-1} + (1-rho) * grad * grad mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) var <- var - mom
Argomenti:
- scope: un oggetto Scope
- var: dovrebbe provenire da una variabile().
- mg: dovrebbe provenire da una variabile().
- ms: dovrebbe provenire da una variabile().
- mamma: Dovrebbe provenire da una Variabile().
- lr: fattore di scala. Deve essere uno scalare.
- rho: tasso di decadimento. Deve essere uno scalare.
- epsilon: termine di cresta. Deve essere uno scalare.
- grad: il gradiente.
- indici: un vettore di indici nella prima dimensione di var, ms e mom.
Attributi facoltativi (vedi Attrs
):
- use_locking: Se
True
, l'aggiornamento dei tensori var, mg, ms e mom è protetto da un blocco; altrimenti il comportamento non è definito, ma può mostrare meno contesa.
Resi:
Costruttori e distruttori |
---|
ResourceSparseApplyCenteredRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input mg, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, :: tensorflow::Input indices)
|
ResourceSparseApplyCenteredRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input mg, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, :: tensorflow::Input indices, const ResourceSparseApplyCenteredRMSProp::Attrs & attrs) |
Attributi pubblici
Funzioni pubbliche
ResourceSparseApplyCenteredRMSProp
ResourceSparseApplyCenteredRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input mg,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
::tensorflow::Input grad,
::tensorflow::Input indices
)
ResourceSparseApplyCenteredRMSProp
ResourceSparseApplyCenteredRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input mg,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
::tensorflow::Input grad,
::tensorflow::Input indices,
const ResourceSparseApplyCenteredRMSProp::Attrs & attrs
)
operator::tensorflow::Operazione
operator::tensorflow::Operation() const
Funzioni pubbliche statiche
UsaLocking
Attrs UseLocking(
bool x
)
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::ResourceSparseApplyCenteredRMSProp Class Reference\n\ntensorflow::ops::ResourceSparseApplyCenteredRMSProp\n===================================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the centered RMSProp algorithm.\n\nSummary\n-------\n\nThe centered RMSProp algorithm uses an estimate of the centered second moment (i.e., the variance) for normalization, as opposed to regular RMSProp, which uses the (uncentered) second moment. This often helps with training, but is slightly more expensive in terms of computation and memory.\n\nNote that in dense implementation of this algorithm, mg, ms, and mom will update even if the grad is zero, but in this sparse implementation, mg, ms, and mom will not update in iterations during which the grad is zero.\n\nmean_square = decay \\* mean_square + (1-decay) \\* gradient \\*\\* 2 mean_grad = decay \\* mean_grad + (1-decay) \\* gradient Delta = learning_rate \\* gradient / sqrt(mean_square + epsilon - mean_grad \\*\\* 2)\n\nms \\\u003c- rho \\* ms_{t-1} + (1-rho) \\* grad \\* grad mom \\\u003c- momentum \\* mom_{t-1} + lr \\* grad / sqrt(ms + epsilon) var \\\u003c- var - mom\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- mg: Should be from a Variable().\n- ms: Should be from a Variable().\n- mom: Should be from a Variable().\n- lr: Scaling factor. Must be a scalar.\n- rho: Decay rate. Must be a scalar.\n- epsilon: Ridge term. Must be a scalar.\n- grad: The gradient.\n- indices: A vector of indices into the first dimension of var, ms and mom.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-sparse-apply-centered-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var, mg, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- the created [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation)\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ResourceSparseApplyCenteredRMSProp](#classtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1a13dce41e7458cfc667c93e6eb59c6b65)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mg, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices)` ||\n| [ResourceSparseApplyCenteredRMSProp](#classtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1a52eb0f57f659a5ba696a88c140adcb50)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mg, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, const `[ResourceSparseApplyCenteredRMSProp::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-sparse-apply-centered-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1a9e8632bd56dbebb4ae758e5db70e362e) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|\n| [operator::tensorflow::Operation](#classtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1ab672a067b2ca695827a21dc01767c358)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1ab5163ae6d398ae1e0b22fd8f71091162)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-sparse-apply-centered-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1_1_attrs) |\n\n| ### Structs ||\n|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ResourceSparseApplyCenteredRMSProp::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-sparse-apply-centered-r-m-s-prop/attrs) | Optional attribute setters for [ResourceSparseApplyCenteredRMSProp](/versions/r1.15/api_docs/cc/class/tensorflow/ops/resource-sparse-apply-centered-r-m-s-prop#classtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### ResourceSparseApplyCenteredRMSProp\n\n```gdscript\n ResourceSparseApplyCenteredRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input mg,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices\n)\n``` \n\n### ResourceSparseApplyCenteredRMSProp\n\n```gdscript\n ResourceSparseApplyCenteredRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input mg,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices,\n const ResourceSparseApplyCenteredRMSProp::Attrs & attrs\n)\n``` \n\n### operator::tensorflow::Operation\n\n```gdscript\n operator::tensorflow::Operation() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]