Organízate con las colecciones
Guarda y clasifica el contenido según tus preferencias.
flujo tensor:: operaciones:: Restaurar segmento
#include <io_ops.h>
Restaura un tensor a partir de archivos de puntos de control.
Resumen
Esto es como Restore
, excepto que el tensor restaurado se puede enumerar como si llenara solo una porción de un tensor más grande. shape_and_slice
especifica la forma del tensor más grande y el segmento que cubre el tensor restaurado.
La entrada shape_and_slice
tiene el mismo formato que los elementos de la entrada shapes_and_slices
de la operación SaveSlices
.
Argumentos:
- alcance: un objeto de alcance
- file_pattern: Debe tener un solo elemento. El patrón de los archivos de los que leemos el tensor.
- tensor_name: debe tener un solo elemento. El nombre del tensor que se va a restaurar.
- shape_and_slice: escalar. Las formas y especificaciones de corte que se utilizarán al restaurar tensores.
- dt: El tipo de tensor que se va a restaurar.
Atributos opcionales (ver Attrs
):
- fragmento_preferido: índice del archivo que se abrirá primero si varios archivos coinciden con
file_pattern
. Consulte la documentación para Restore
.
Devoluciones:
-
Output
: El tensor restaurado.
Atributos públicos
Funciones públicas
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador::tensorflow::Salida
operator::tensorflow::Output() const
Funciones estáticas públicas
Fragmento preferido
Attrs PreferredShard(
int64 x
)
A menos que se indique lo contrario, el contenido de esta página está sujeto a la licencia Reconocimiento 4.0 de Creative Commons y las muestras de código están sujetas a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio web de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-07-26 (UTC).
[null,null,["Última actualización: 2025-07-26 (UTC)."],[],[],null,["# tensorflow::ops::RestoreSlice Class Reference\n\ntensorflow::ops::RestoreSlice\n=============================\n\n`#include \u003cio_ops.h\u003e`\n\nRestores a tensor from checkpoint files.\n\nSummary\n-------\n\nThis is like [Restore](/versions/r1.15/api_docs/cc/class/tensorflow/ops/restore#classtensorflow_1_1ops_1_1_restore) except that restored tensor can be listed as filling only a slice of a larger tensor. `shape_and_slice` specifies the shape of the larger tensor and the slice that the restored tensor covers.\n\nThe `shape_and_slice` input has the same format as the elements of the `shapes_and_slices` input of the [SaveSlices](/versions/r1.15/api_docs/cc/class/tensorflow/ops/save-slices#classtensorflow_1_1ops_1_1_save_slices) op.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- file_pattern: Must have a single element. The pattern of the files from which we read the tensor.\n- tensor_name: Must have a single element. The name of the tensor to be restored.\n- shape_and_slice: Scalar. The shapes and slice specifications to use when restoring a tensors.\n- dt: The type of the tensor to be restored.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/restore-slice/attrs#structtensorflow_1_1ops_1_1_restore_slice_1_1_attrs)):\n\n- preferred_shard: Index of file to open first if multiple files match `file_pattern`. See the documentation for [Restore](/versions/r1.15/api_docs/cc/class/tensorflow/ops/restore#classtensorflow_1_1ops_1_1_restore).\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The restored tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [RestoreSlice](#classtensorflow_1_1ops_1_1_restore_slice_1a2d2ed9358de458c5ac241a0b49dd0389)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` file_pattern, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` tensor_name, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape_and_slice, DataType dt)` ||\n| [RestoreSlice](#classtensorflow_1_1ops_1_1_restore_slice_1a901a12a32fed966841204972e978f1e2)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` file_pattern, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` tensor_name, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape_and_slice, DataType dt, const `[RestoreSlice::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/restore-slice/attrs#structtensorflow_1_1ops_1_1_restore_slice_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_restore_slice_1a2e52156c6ad72a0c59d36634c5a00fc2) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [tensor](#classtensorflow_1_1ops_1_1_restore_slice_1a4edd358a8874c36fb6833d1ede49ea5b) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_restore_slice_1a8fd0b9d2345f9764bce4bf60b909df4e)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_restore_slice_1a5b9012c2e1217bc1dee69a95451e7897)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_restore_slice_1aa5b92a74357789547971721a0725640b)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|\n| [PreferredShard](#classtensorflow_1_1ops_1_1_restore_slice_1ab8d2e2b14f8caab4f86d94957df53eef)`(int64 x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/restore-slice/attrs#structtensorflow_1_1ops_1_1_restore_slice_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::RestoreSlice::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/restore-slice/attrs) | Optional attribute setters for [RestoreSlice](/versions/r1.15/api_docs/cc/class/tensorflow/ops/restore-slice#classtensorflow_1_1ops_1_1_restore_slice). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### tensor\n\n```text\n::tensorflow::Output tensor\n``` \n\nPublic functions\n----------------\n\n### RestoreSlice\n\n```gdscript\n RestoreSlice(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input file_pattern,\n ::tensorflow::Input tensor_name,\n ::tensorflow::Input shape_and_slice,\n DataType dt\n)\n``` \n\n### RestoreSlice\n\n```gdscript\n RestoreSlice(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input file_pattern,\n ::tensorflow::Input tensor_name,\n ::tensorflow::Input shape_and_slice,\n DataType dt,\n const RestoreSlice::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### PreferredShard\n\n```text\nAttrs PreferredShard(\n int64 x\n)\n```"]]