Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: ScatterNdUpdate
#include <state_ops.h>
Applica updates
sparsi a singoli valori o sezioni all'interno di un dato.
Riepilogo
variabile secondo indices
.
ref
è un Tensor
di rango P
e indices
è un Tensor
di rango Q
.
indices
devono essere tensori interi, contenenti indici in ref
. Deve essere forma \([d_0, ..., d_{Q-2}, K]\) dove 0 < K <= P
.
La dimensione più interna degli indices
(con lunghezza K
) corrisponde agli indici in elementi (se K = P
) o fette (se K < P
) lungo la K
-esima dimensione di ref
.
updates
sono Tensor
di rango Q-1+PK
con forma:
$$[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].$$
Ad esempio, supponiamo di voler aggiornare 4 elementi sparsi in un tensore di rango 1 a 8 elementi. In Python, l'aggiornamento sarebbe simile a questo:
ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
update = tf.scatter_nd_update(ref, indices, updates)
with tf.Session() as sess:
print sess.run(update)
L'aggiornamento risultante a ref sarebbe simile al seguente:
[1, 11, 3, 10, 9, 6, 7, 12]
Vedi tf.scatter_nd
per maggiori dettagli su come apportare aggiornamenti alle sezioni.
Vedi anche tf.scatter_update
e tf.batch_scatter_update
.
Argomenti:
- scope: un oggetto Scope
- rif: Un tensore mutabile. Dovrebbe provenire da un nodo Variabile .
- indici: A Tensore . Deve essere uno dei seguenti tipi: int32, int64. Un tensore di indici nel rif.
- aggiornamenti: Un Tensore . Deve essere dello stesso tipo del rif. Un tensore di valori aggiornati da aggiungere al rif.
Attributi facoltativi (vedi Attrs
):
- use_locking: un valore bool opzionale. Il valore predefinito è Vero. Se True, l'assegnazione sarà protetta da un lucchetto; altrimenti il comportamento non è definito, ma può mostrare meno contesa.
Resi:
-
Output
: Uguale al rif. Restituito per comodità per le operazioni che desiderano utilizzare i valori aggiornati al termine dell'aggiornamento.
Attributi pubblici
Funzioni pubbliche
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatore::tensorflow::Output
operator::tensorflow::Output() const
Funzioni pubbliche statiche
UsaLocking
Attrs UseLocking(
bool x
)
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::ScatterNdUpdate Class Reference\n\ntensorflow::ops::ScatterNdUpdate\n================================\n\n`#include \u003cstate_ops.h\u003e`\n\nApplies sparse `updates` to individual values or slices within a given.\n\nSummary\n-------\n\nvariable according to `indices`.\n\n`ref` is a [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with rank `P` and `indices` is a [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) of rank `Q`.\n\n`indices` must be integer tensor, containing indices into `ref`. It must be shape \\\\(\\[d_0, ..., d_{Q-2}, K\\]\\\\) where `0 \u003c K \u003c= P`.\n\nThe innermost dimension of `indices` (with length `K`) corresponds to indices into elements (if `K = P`) or slices (if `K \u003c P`) along the `K`th dimension of `ref`.\n\n`updates` is [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) of rank `Q-1+P-K` with shape:\n\n$$\\[d_0, ..., d_{Q-2}, ref.shape\\[K\\], ..., ref.shape\\[P-1\\]\\].$$\n\nFor example, say we want to update 4 scattered elements to a rank-1 tensor to 8 elements. In Python, that update would look like this:\n\n\n```gdscript\n ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])\n indices = tf.constant([[4], [3], [1] ,[7]])\n updates = tf.constant([9, 10, 11, 12])\n update = tf.scatter_nd_update(ref, indices, updates)\n with tf.Session() as sess:\n print sess.run(update)\n```\n\n\u003cbr /\u003e\n\nThe resulting update to ref would look like this: \n\n```text\n[1, 11, 3, 10, 9, 6, 7, 12]\n```\n\n\u003cbr /\u003e\n\nSee `tf.scatter_nd` for more details about how to make updates to slices.\n\nSee also `tf.scatter_update` and `tf.batch_scatter_update`.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- ref: A mutable [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor). Should be from a [Variable](/versions/r1.15/api_docs/cc/class/tensorflow/ops/variable#classtensorflow_1_1ops_1_1_variable) node.\n- indices: A [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor). Must be one of the following types: int32, int64. A tensor of indices into ref.\n- updates: A [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor). Must have the same type as ref. A tensor of updated values to add to ref.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/scatter-nd-update/attrs#structtensorflow_1_1ops_1_1_scatter_nd_update_1_1_attrs)):\n\n- use_locking: An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ScatterNdUpdate](#classtensorflow_1_1ops_1_1_scatter_nd_update_1acb6b3b44045199decc158f661ed16c3f)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ref, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` updates)` ||\n| [ScatterNdUpdate](#classtensorflow_1_1ops_1_1_scatter_nd_update_1ae3aa0b51b9e1787da8db1bf0b0eff7a2)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ref, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` updates, const `[ScatterNdUpdate::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/scatter-nd-update/attrs#structtensorflow_1_1ops_1_1_scatter_nd_update_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_scatter_nd_update_1a8d113d05ce297b3fbdfe5ec0108a9d2a) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_ref](#classtensorflow_1_1ops_1_1_scatter_nd_update_1a3207186292f8bca8cf869bc6a6aa2f82) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_scatter_nd_update_1aa755e0d558f6d9154ad504413b815c87)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_scatter_nd_update_1aaf1431785e8afb4ad1f0498144a12e6b)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_scatter_nd_update_1a2e39eab6b05cd85493c30752a36ca1ea)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_scatter_nd_update_1aecb251dcdebad69c21d53f5980d0dd80)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/scatter-nd-update/attrs#structtensorflow_1_1ops_1_1_scatter_nd_update_1_1_attrs) |\n\n| ### Structs ||\n|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ScatterNdUpdate::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/scatter-nd-update/attrs) | Optional attribute setters for [ScatterNdUpdate](/versions/r1.15/api_docs/cc/class/tensorflow/ops/scatter-nd-update#classtensorflow_1_1ops_1_1_scatter_nd_update). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_ref\n\n```scdoc\n::tensorflow::Output output_ref\n``` \n\nPublic functions\n----------------\n\n### ScatterNdUpdate\n\n```gdscript\n ScatterNdUpdate(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input ref,\n ::tensorflow::Input indices,\n ::tensorflow::Input updates\n)\n``` \n\n### ScatterNdUpdate\n\n```gdscript\n ScatterNdUpdate(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input ref,\n ::tensorflow::Input indices,\n ::tensorflow::Input updates,\n const ScatterNdUpdate::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]