جریان تنسور:: عملیات:: SparseSplit
#include <sparse_ops.h>
SparseTensor
در امتداد یک بعد به تانسورهای num_split
تقسیم کنید.
خلاصه
اگر shape[split_dim]
مضرب صحیح num_split
نباشد. Slices [0 : shape[split_dim] % num_split]
یک بعد اضافی می گیرد. به عنوان مثال، اگر split_dim = 1
و num_split = 2
و ورودی است
input_tensor = shape = [2, 7] [ a d e ] [b c ]
از نظر گرافیکی تانسورهای خروجی عبارتند از:
output_tensor[0] = shape = [2, 4] [ a ] [b c ] output_tensor[1] = shape = [2, 3] [ d e ] [ ]
استدلال ها:
- scope: یک شی Scope
- split_dim: 0-D. بعد که در امتداد آن تقسیم شود. باید در محدوده
[0, rank(shape))
باشد. - شاخص ها: تانسور 2 بعدی نشان دهنده شاخص های تانسور پراکنده است.
- مقادیر: تانسور 1-D نشان دهنده مقادیر تانسور پراکنده است.
- شکل: 1-D. تانسور شکل تانسور پراکنده را نشان می دهد. شاخص های خروجی: فهرستی از تانسورهای 1-D نشان دهنده شاخص های تانسورهای پراکنده خروجی است.
- num_split: تعداد روشهای تقسیم.
برمیگرداند:
-
OutputList
output_indexes -
OutputList
output_values: لیستی از تانسورهای 1-D مقادیر تانسورهای پراکنده خروجی را نشان می دهد. -
OutputList
output_shape: لیستی از تانسورهای 1 بعدی شکل تانسورهای پراکنده خروجی را نشان می دهد.
سازندگان و ویرانگرها | |
---|---|
SparseSplit (const :: tensorflow::Scope & scope, :: tensorflow::Input split_dim, :: tensorflow::Input indices, :: tensorflow::Input values, :: tensorflow::Input shape, int64 num_split) |
صفات عمومی | |
---|---|
operation | |
output_indices | |
output_shape | |
output_values |
صفات عمومی
عملیات
Operation operation
خروجی_شاخص ها
::tensorflow::OutputList output_indices
خروجی_شکل
::tensorflow::OutputList output_shape
مقادیر_خروجی
::tensorflow::OutputList output_values
توابع عمومی
SparseSplit
SparseSplit( const ::tensorflow::Scope & scope, ::tensorflow::Input split_dim, ::tensorflow::Input indices, ::tensorflow::Input values, ::tensorflow::Input shape, int64 num_split )
جز در مواردی که غیر از این ذکر شده باشد،محتوای این صفحه تحت مجوز Creative Commons Attribution 4.0 License است. نمونه کدها نیز دارای مجوز Apache 2.0 License است. برای اطلاع از جزئیات، به خطمشیهای سایت Google Developers مراجعه کنید. جاوا علامت تجاری ثبتشده Oracle و/یا شرکتهای وابسته به آن است.
تاریخ آخرین بهروزرسانی 2025-07-25 بهوقت ساعت هماهنگ جهانی.
[null,null,["تاریخ آخرین بهروزرسانی 2025-07-25 بهوقت ساعت هماهنگ جهانی."],[],[],null,["# tensorflow::ops::SparseSplit Class Reference\n\ntensorflow::ops::SparseSplit\n============================\n\n`#include \u003csparse_ops.h\u003e`\n\nSplit a `SparseTensor` into `num_split` tensors along one dimension.\n\nSummary\n-------\n\nIf the `shape[split_dim]` is not an integer multiple of `num_split`. Slices `[0 : shape[split_dim] % num_split]` gets one extra dimension. For example, if `split_dim = 1` and `num_split = 2` and the input is \n\n```objective-c\ninput_tensor = shape = [2, 7]\n[ a d e ]\n[b c ]\n```\n\n\u003cbr /\u003e\n\nGraphically the output tensors are: \n\n```objective-c\noutput_tensor[0] = shape = [2, 4]\n[ a ]\n[b c ]\n\noutput_tensor[1] = shape = [2, 3]\n[ d e ]\n[ ]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- split_dim: 0-D. The dimension along which to split. Must be in the range `[0, rank(shape))`.\n- indices: 2-D tensor represents the indices of the sparse tensor.\n- values: 1-D tensor represents the values of the sparse tensor.\n- shape: 1-D. tensor represents the shape of the sparse tensor. output indices: A list of 1-D tensors represents the indices of the output sparse tensors.\n- num_split: The number of ways to split.\n\n\u003cbr /\u003e\n\nReturns:\n\n- `OutputList` output_indices\n- `OutputList` output_values: A list of 1-D tensors represents the values of the output sparse tensors.\n- `OutputList` output_shape: A list of 1-D tensors represents the shape of the output sparse tensors.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSplit](#classtensorflow_1_1ops_1_1_sparse_split_1a321e452a28531c13e1804a67073d0d86)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` split_dim, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` values, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape, int64 num_split)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_split_1a2974c5fbf83913d7d9f9efaad3748136) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_indices](#classtensorflow_1_1ops_1_1_sparse_split_1aa34695e1d3350589e31496300ce37439) | `::`[tensorflow::OutputList](/versions/r1.15/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [output_shape](#classtensorflow_1_1ops_1_1_sparse_split_1aaadf678ffb2ceae9b4a3a71e743c04e4) | `::`[tensorflow::OutputList](/versions/r1.15/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [output_values](#classtensorflow_1_1ops_1_1_sparse_split_1a16af03b2decbe6d8c2b506f3e48dca4a) | `::`[tensorflow::OutputList](/versions/r1.15/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_indices\n\n```scdoc\n::tensorflow::OutputList output_indices\n``` \n\n### output_shape\n\n```scdoc\n::tensorflow::OutputList output_shape\n``` \n\n### output_values\n\n```scdoc\n::tensorflow::OutputList output_values\n``` \n\nPublic functions\n----------------\n\n### SparseSplit\n\n```gdscript\n SparseSplit(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input split_dim,\n ::tensorflow::Input indices,\n ::tensorflow::Input values,\n ::tensorflow::Input shape,\n int64 num_split\n)\n```"]]