Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
dòng chảy căng:: ôi:: Chuyển đổi2D:: Attr
#include <nn_ops.h>
Trình thiết lập thuộc tính tùy chọn cho Conv2D .
Bản tóm tắt
Chức năng công cộng |
---|
DataFormat (StringPiece x) | Chỉ định định dạng dữ liệu của dữ liệu đầu vào và đầu ra. |
Dilations (const gtl::ArraySlice< int > & x) | Tenxơ 1-D có chiều dài 4. |
ExplicitPaddings (const gtl::ArraySlice< int > & x) | Nếu padding là "EXPLICIT" , thì danh sách số lượng phần đệm rõ ràng. |
UseCudnnOnGpu (bool x) | Mặc định là đúng. |
Thuộc tính công khai
StringPiece tensorflow::ops::Conv2D::Attrs::data_format_ = "NHWC"
sự giãn nở_
gtl::ArraySlice< int > tensorflow::ops::Conv2D::Attrs::dilations_ = Default_dilations()
rõ ràng_paddings_
gtl::ArraySlice< int > tensorflow::ops::Conv2D::Attrs::explicit_paddings_ = {}
use_cudnn_on_gpu_
bool tensorflow::ops::Conv2D::Attrs::use_cudnn_on_gpu_ = true
Chức năng công cộng
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::DataFormat(
StringPiece x
)
Chỉ định định dạng dữ liệu của dữ liệu đầu vào và đầu ra.
Với định dạng mặc định "NHWC", dữ liệu được lưu trữ theo thứ tự: [lô, chiều cao, chiều rộng, kênh]. Ngoài ra, định dạng có thể là "NCHW", thứ tự lưu trữ dữ liệu là: [lô, kênh, chiều cao, chiều rộng].
Mặc định là "NHWC"
Sự giãn nở
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::Dilations(
const gtl::ArraySlice< int > & x
)
Tenxơ 1-D có chiều dài 4.
Hệ số giãn nở cho từng chiều của input
. Nếu được đặt thành k > 1, sẽ có k-1 ô bị bỏ qua giữa mỗi phần tử bộ lọc trên thứ nguyên đó. Thứ tự thứ nguyên được xác định bởi giá trị của data_format
, xem chi tiết ở trên. Độ giãn nở của kích thước lô và độ sâu phải bằng 1.
Mặc định là [1, 1, 1, 1]
Đệm rõ ràng
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::ExplicitPaddings(
const gtl::ArraySlice< int > & x
)
Nếu padding
là "EXPLICIT"
, thì danh sách số lượng phần đệm rõ ràng.
Đối với thứ nguyên thứ i, lượng khoảng đệm được chèn trước và sau thứ nguyên lần lượt là explicit_paddings[2 * i]
và explicit_paddings[2 * i + 1]
. Nếu padding
không phải là "EXPLICIT"
thì explicit_paddings
phải trống.
Mặc định là []
Sử dụngCudnnOnGpu
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::UseCudnnOnGpu(
bool x
)
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-25 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::Conv2D::Attrs Struct Reference\n\ntensorflow::ops::Conv2D::Attrs\n==============================\n\n`#include \u003cnn_ops.h\u003e`\n\nOptional attribute setters for [Conv2D](/versions/r1.15/api_docs/cc/class/tensorflow/ops/conv2-d#classtensorflow_1_1ops_1_1_conv2_d).\n\nSummary\n-------\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------------------------|--------------------------|\n| [data_format_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a826b92a551e53c7d7e3f8990dbbdc328)` = \"NHWC\"` | `StringPiece` |\n| [dilations_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a38cfe8f5a9fd31568b79caff3d5db53f)` = Default_dilations()` | `gtl::ArraySlice\u003c int \u003e` |\n| [explicit_paddings_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1af6a0a48d47098676589b0c23d6615b73)` = {}` | `gtl::ArraySlice\u003c int \u003e` |\n| [use_cudnn_on_gpu_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1ac0181cd1c99e758fff22f356f9c51f12)` = true` | `bool` |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1abafbedb30c29ed091ff37895bd8b6c6a)`(StringPiece x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) Specify the data format of the input and output data. |\n| [Dilations](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a16869b39ea0a373acb40566ed4235eb1)`(const gtl::ArraySlice\u003c int \u003e & x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) 1-D tensor of length 4. |\n| [ExplicitPaddings](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a69865f8fd6ea1e16ccc3e4b794ed3b56)`(const gtl::ArraySlice\u003c int \u003e & x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) If `padding` is `\"EXPLICIT\"`, the list of explicit padding amounts. |\n| [UseCudnnOnGpu](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a6fb079456a188df93e329f61671ff674)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) Defaults to true. |\n\nPublic attributes\n-----------------\n\n### data_format_\n\n```scdoc\nStringPiece tensorflow::ops::Conv2D::Attrs::data_format_ = \"NHWC\"\n``` \n\n### dilations_\n\n```scdoc\ngtl::ArraySlice\u003c int \u003e tensorflow::ops::Conv2D::Attrs::dilations_ = Default_dilations()\n``` \n\n### explicit_paddings_\n\n```scdoc\ngtl::ArraySlice\u003c int \u003e tensorflow::ops::Conv2D::Attrs::explicit_paddings_ = {}\n``` \n\n### use_cudnn_on_gpu_\n\n```scdoc\nbool tensorflow::ops::Conv2D::Attrs::use_cudnn_on_gpu_ = true\n``` \n\nPublic functions\n----------------\n\n### DataFormat\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::DataFormat(\n StringPiece x\n)\n``` \nSpecify the data format of the input and output data.\n\nWith the default format \"NHWC\", the data is stored in the order of: \\[batch, height, width, channels\\]. Alternatively, the format could be \"NCHW\", the data storage order of: \\[batch, channels, height, width\\].\n\nDefaults to \"NHWC\" \n\n### Dilations\n\n```gdscript\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \n1-D tensor of length 4.\n\nThe dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\nDefaults to \\[1, 1, 1, 1\\] \n\n### ExplicitPaddings\n\n```gdscript\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::ExplicitPaddings(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \nIf `padding` is `\"EXPLICIT\"`, the list of explicit padding amounts.\n\nFor the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `\"EXPLICIT\"`, `explicit_paddings` must be empty.\n\nDefaults to \\[\\] \n\n### UseCudnnOnGpu\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::UseCudnnOnGpu(\n bool x\n)\n``` \nDefaults to true."]]