Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
#include <array_ops.h>
Extrayez patches
de input
et placez-les dans la dimension de sortie "profondeur".
Résumé
Extension 3D de extract_image_patches
.
Arguments :
- scope : un objet Scope
- entrée : Tenseur 5D avec forme
[batch, in_planes, in_rows, in_cols, depth]
. - ksizes : La taille de la fenêtre coulissante pour chaque dimension de
input
. - foulées : 1-D de longueur 5. Jusqu'où se trouvent les centres de deux patchs consécutifs en
input
. Doit être : [1, stride_planes, stride_rows, stride_cols, 1]
. - padding : Le type d’algorithme de remplissage à utiliser.
Nous spécifions les attributs liés à la taille comme suit :
ksizes = [1, ksize_planes, ksize_rows, ksize_cols, 1]
strides = [1, stride_planes, strides_rows, strides_cols, 1]
Retours :
-
Output
: Tenseur 5D avec forme [batch, out_planes, out_rows, out_cols, ksize_planes * ksize_rows * ksize_cols * depth]
contenant des patchs de taille ksize_planes x ksize_rows x ksize_cols x depth
vectorisés dans la dimension "profondeur". Notez que out_planes
, out_rows
et out_cols
sont les dimensions des correctifs de sortie.
Attributs publics
Fonctions publiques
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[],[],null,["# tensorflow::ops::ExtractVolumePatches Class Reference\n\ntensorflow::ops::ExtractVolumePatches\n=====================================\n\n`#include \u003carray_ops.h\u003e`\n\nExtract `patches` from `input` and put them in the \"depth\" output dimension.\n\nSummary\n-------\n\n3D extension of `extract_image_patches`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 5-D [Tensor](/versions/r2.0/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape `[batch, in_planes, in_rows, in_cols, depth]`.\n- ksizes: The size of the sliding window for each dimension of `input`.\n- strides: 1-D of length 5. How far the centers of two consecutive patches are in `input`. Must be: `[1, stride_planes, stride_rows, stride_cols, 1]`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nWe specify the size-related attributes as:\n\n\n```scdoc\n ksizes = [1, ksize_planes, ksize_rows, ksize_cols, 1]\n strides = [1, stride_planes, strides_rows, strides_cols, 1]\n```\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 5-D [Tensor](/versions/r2.0/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape `[batch, out_planes, out_rows, out_cols, ksize_planes * ksize_rows * ksize_cols * depth]` containing patches with size `ksize_planes x ksize_rows x ksize_cols x depth` vectorized in the \"depth\" dimension. Note `out_planes`, `out_rows` and `out_cols` are the dimensions of the output patches.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ExtractVolumePatches](#classtensorflow_1_1ops_1_1_extract_volume_patches_1a752dba9a13577efb227d68e11e73e4e7)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, const gtl::ArraySlice\u003c int \u003e & ksizes, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_extract_volume_patches_1ab7a74fc2dc2e90c7c44399f5673a6664) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [patches](#classtensorflow_1_1ops_1_1_extract_volume_patches_1a88a4e306f94549ed420d3e6770bf7bbc) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_extract_volume_patches_1ad156203fcbe558f0a53b6c0b7f34c016)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_extract_volume_patches_1ad316cf0f924cac92315f835a66c577f8)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_extract_volume_patches_1a6ff00c0c8df929a77bf90a0258d87a88)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### patches\n\n```text\n::tensorflow::Output patches\n``` \n\nPublic functions\n----------------\n\n### ExtractVolumePatches\n\n```gdscript\n ExtractVolumePatches(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n const gtl::ArraySlice\u003c int \u003e & ksizes,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]