সেভ করা পৃষ্ঠা গুছিয়ে রাখতে 'সংগ্রহ' ব্যবহার করুন
আপনার পছন্দ অনুযায়ী কন্টেন্ট সেভ করুন ও সঠিক বিভাগে রাখুন।
টেনসরফ্লো :: অপস:: সংগ্রহ করা
#include <array_ops.h>
indices
দ্বারা নির্দিষ্ট আকৃতি সহ একটি টেনসরে params
থেকে স্লাইস সংগ্রহ করুন ।
সারাংশ
indices
হল একটি K-মাত্রিক পূর্ণসংখ্যার টেনসর, সর্বোত্তমভাবে বিবেচনা করা হয় একটি (K-1)-মাত্রিক টেনসর হিসাবে সূচকগুলির params
, যেখানে প্রতিটি উপাদান params
একটি স্লাইস সংজ্ঞায়িত করে:
output[\\(i_0, ..., i_{K-2}\\)] = params[indices[\\(i_0, ..., i_{K-2}\\)]]
যেখানে tf.gather
indices
params
প্রথম মাত্রায় স্লাইসগুলিকে সংজ্ঞায়িত করে, tf.gather_nd
এ, indices
params
প্রথম N
মাত্রাগুলিতে স্লাইসগুলিকে সংজ্ঞায়িত করে, যেখানে N = indices.shape[-1]
।
indices
শেষ মাত্রা সর্বাধিক params
র্যাঙ্ক হতে পারে:
indices.shape[-1] <= params.rank
indices
শেষ মাত্রা উপাদানগুলির সাথে মিলে যায় (যদি indices.shape[-1] == params.rank
) বা params
মাত্রা indices.shape[-1] বরাবর স্লাইস ( indices.shape[-1]
indices.shape[-1] < params.rank
) . আউটপুট টেনসরের আকৃতি আছে
indices.shape[:-1] + params.shape[indices.shape[-1]:]
মনে রাখবেন যে CPU-তে, আউট অফ বাউন্ড সূচক পাওয়া গেলে, একটি ত্রুটি ফেরত দেওয়া হয়। GPU-তে, যদি একটি আউট অফ বাউন্ড সূচক পাওয়া যায়, একটি 0 সংশ্লিষ্ট আউটপুট মানের মধ্যে সংরক্ষণ করা হয়।
নিচে কিছু উদাহরণ।
একটি ম্যাট্রিক্সে সহজ সূচীকরণ:
indices = [[0, 0], [1, 1]]
params = [['a', 'b'], ['c', 'd']]
output = ['a', 'd']
একটি ম্যাট্রিক্সে সূচী স্লাইস করুন:
indices = [[1], [0]]
params = [['a', 'b'], ['c', 'd']]
output = [['c', 'd'], ['a', 'b']]
একটি 3-টেনসরে সূচীকরণ:
indices = [[1]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [[['a1', 'b1'], ['c1', 'd1']]]
indices = [[0, 1], [1, 0]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [['c0', 'd0'], ['a1', 'b1']]
indices = [[0, 0, 1], [1, 0, 1]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = ['b0', 'b1']
একটি ম্যাট্রিক্সে ব্যাচ করা ইন্ডেক্সিং:
indices = [[[0, 0]], [[0, 1]]]
params = [['a', 'b'], ['c', 'd']]
output = [['a'], ['b']]
একটি ম্যাট্রিক্সে ব্যাচড স্লাইস ইন্ডেক্সিং:
indices = [[[1]], [[0]]]
params = [['a', 'b'], ['c', 'd']]
output = [[['c', 'd']], [['a', 'b']]]
একটি 3-টেনসরে ব্যাচ করা ইন্ডেক্সিং:
indices = [[[1]], [[0]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [[[['a1', 'b1'], ['c1', 'd1']]],
[[['a0', 'b0'], ['c0', 'd0']]]]
indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [[['c0', 'd0'], ['a1', 'b1']],
[['a0', 'b0'], ['c1', 'd1']]]
indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [['b0', 'b1'], ['d0', 'c1']]
এছাড়াও tf.gather
এবং tf.batch_gather
দেখুন।
যুক্তি:
- স্কোপ: একটি স্কোপ অবজেক্ট
- params: যে টেনসর থেকে মান সংগ্রহ করতে হয়।
- indices: সূচক টেনসর।
রিটার্ন:
-
Output
: indices
দ্বারা প্রদত্ত সূচকগুলি থেকে সংগৃহীত params
থেকে মানগুলি, আকৃতির indices.shape[:-1] + params.shape[indices.shape[-1]:]
সহ।
পাবলিক বৈশিষ্ট্য
পাবলিক ফাংশন
নোড
::tensorflow::Node * node() const
operator::tensorflow::Input() const
অপারেটর::টেনসরফ্লো::আউটপুট
operator::tensorflow::Output() const
অন্য কিছু উল্লেখ না করা থাকলে, এই পৃষ্ঠার কন্টেন্ট Creative Commons Attribution 4.0 License-এর অধীনে এবং কোডের নমুনাগুলি Apache 2.0 License-এর অধীনে লাইসেন্স প্রাপ্ত। আরও জানতে, Google Developers সাইট নীতি দেখুন। Java হল Oracle এবং/অথবা তার অ্যাফিলিয়েট সংস্থার রেজিস্টার্ড ট্রেডমার্ক।
2025-07-26 UTC-তে শেষবার আপডেট করা হয়েছে।
[null,null,["2025-07-26 UTC-তে শেষবার আপডেট করা হয়েছে।"],[],[],null,["# tensorflow::ops::GatherNd Class Reference\n\ntensorflow::ops::GatherNd\n=========================\n\n`#include \u003carray_ops.h\u003e`\n\n[Gather](/versions/r2.0/api_docs/cc/class/tensorflow/ops/gather#classtensorflow_1_1ops_1_1_gather) slices from `params` into a [Tensor](/versions/r2.0/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape specified by `indices`.\n\nSummary\n-------\n\n`indices` is a K-dimensional integer tensor, best thought of as a (K-1)-dimensional tensor of indices into `params`, where each element defines a slice of `params`: \n\n```scdoc\noutput[\\\\(i_0, ..., i_{K-2}\\\\)] = params[indices[\\\\(i_0, ..., i_{K-2}\\\\)]]\n```\n\n\u003cbr /\u003e\n\nWhereas in `tf.gather``indices` defines slices into the first dimension of `params`, in `tf.gather_nd`, `indices` defines slices into the first `N` dimensions of `params`, where `N = indices.shape[-1]`.\n\nThe last dimension of `indices` can be at most the rank of `params`: \n\n```text\nindices.shape[-1] \u003c= params.rank\n```\n\n\u003cbr /\u003e\n\nThe last dimension of `indices` corresponds to elements (if `indices.shape[-1] == params.rank`) or slices (if `indices.shape[-1] \u003c params.rank`) along dimension `indices.shape[-1]` of `params`. The output tensor has shape \n\n```cplint\nindices.shape[:-1] + params.shape[indices.shape[-1]:]\n```\n\n\u003cbr /\u003e\n\nNote that on CPU, if an out of bound index is found, an error is returned. On GPU, if an out of bound index is found, a 0 is stored in the corresponding output value.\n\nSome examples below.\n\nSimple indexing into a matrix:\n\n\n```text\n indices = [[0, 0], [1, 1]]\n params = [['a', 'b'], ['c', 'd']]\n output = ['a', 'd']\n```\n\n\u003cbr /\u003e\n\nSlice indexing into a matrix:\n\n\n```text\n indices = [[1], [0]]\n params = [['a', 'b'], ['c', 'd']]\n output = [['c', 'd'], ['a', 'b']]\n```\n\n\u003cbr /\u003e\n\nIndexing into a 3-tensor:\n\n\n```text\n indices = [[1]]\n params = [[['a0', 'b0'], ['c0', 'd0']],\n [['a1', 'b1'], ['c1', 'd1']]]\n output = [[['a1', 'b1'], ['c1', 'd1']]]\n```\n\n\u003cbr /\u003e\n\n\n```text\n indices = [[0, 1], [1, 0]]\n params = [[['a0', 'b0'], ['c0', 'd0']],\n [['a1', 'b1'], ['c1', 'd1']]]\n output = [['c0', 'd0'], ['a1', 'b1']]\n```\n\n\u003cbr /\u003e\n\n\n```text\n indices = [[0, 0, 1], [1, 0, 1]]\n params = [[['a0', 'b0'], ['c0', 'd0']],\n [['a1', 'b1'], ['c1', 'd1']]]\n output = ['b0', 'b1']\n```\n\n\u003cbr /\u003e\n\nBatched indexing into a matrix:\n\n\n```text\n indices = [[[0, 0]], [[0, 1]]]\n params = [['a', 'b'], ['c', 'd']]\n output = [['a'], ['b']]\n```\n\n\u003cbr /\u003e\n\nBatched slice indexing into a matrix:\n\n\n```text\n indices = [[[1]], [[0]]]\n params = [['a', 'b'], ['c', 'd']]\n output = [[['c', 'd']], [['a', 'b']]]\n```\n\n\u003cbr /\u003e\n\nBatched indexing into a 3-tensor:\n\n\n```text\n indices = [[[1]], [[0]]]\n params = [[['a0', 'b0'], ['c0', 'd0']],\n [['a1', 'b1'], ['c1', 'd1']]]\n output = [[[['a1', 'b1'], ['c1', 'd1']]],\n [[['a0', 'b0'], ['c0', 'd0']]]]\n```\n\n\u003cbr /\u003e\n\n\n```text\n indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]]\n params = [[['a0', 'b0'], ['c0', 'd0']],\n [['a1', 'b1'], ['c1', 'd1']]]\n output = [[['c0', 'd0'], ['a1', 'b1']],\n [['a0', 'b0'], ['c1', 'd1']]]\n```\n\n\u003cbr /\u003e\n\n\n```text\n indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]]\n params = [[['a0', 'b0'], ['c0', 'd0']],\n [['a1', 'b1'], ['c1', 'd1']]]\n output = [['b0', 'b1'], ['d0', 'c1']]\n```\n\n\u003cbr /\u003e\n\nSee also `tf.gather` and `tf.batch_gather`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- params: The tensor from which to gather values.\n- indices: Index tensor.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Values from `params` gathered from indices given by `indices`, with shape `indices.shape[:-1] + params.shape[indices.shape[-1]:]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [GatherNd](#classtensorflow_1_1ops_1_1_gather_nd_1a83ac49d5f8899faa1cf24f7eea2c01ac)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` params, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_gather_nd_1a3ef794c722311cc2b178e09e32c48f15) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_gather_nd_1a3e99a0c52482bb14c94c1bbf9b507e95) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_gather_nd_1ab32d5802ad22d9fa803952390ca3fce8)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_gather_nd_1ab8601c2824b77c2f890a973ccd8f7212)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_gather_nd_1a7741e14bd7240a514268290545b62223)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### GatherNd\n\n```gdscript\n GatherNd(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input params,\n ::tensorflow::Input indices\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]