Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::AllCandidateSampler
#include <candidate_sampling_ops.h>
Generates labels for candidate sampling with a learned unigram distribution.
Summary
See explanations of candidate sampling and the data formats at go/candidate-sampling.
For each batch, this op picks a single set of sampled candidate labels.
The advantages of sampling candidates per-batch are simplicity and the possibility of efficient dense matrix multiplication. The disadvantage is that the sampled candidates must be chosen independently of the context and of the true labels.
Args:
- scope: A Scope object
- true_classes: A batch_size * num_true matrix, in which each row contains the IDs of the num_true target_classes in the corresponding original label.
- num_true: Number of true labels per context.
- num_sampled: Number of candidates to produce.
- unique: If unique is true, we sample with rejection, so that all sampled candidates in a batch are unique. This requires some approximation to estimate the post-rejection sampling probabilities.
Optional attributes (see Attrs
):
- seed: If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed.
- seed2: An second seed to avoid seed collision.
Returns:
Output
sampled_candidates: A vector of length num_sampled, in which each element is the ID of a sampled candidate.
Output
true_expected_count: A batch_size * num_true matrix, representing the number of times each candidate is expected to occur in a batch of sampled candidates. If unique=true, then this is a probability.
Output
sampled_expected_count: A vector of length num_sampled, for each sampled candidate representing the number of times the candidate is expected to occur in a batch of sampled candidates. If unique=true, then this is a probability.
Public static functions
|
Seed(int64 x)
|
|
Seed2(int64 x)
|
|
Public attributes
Public functions
Public static functions
Seed
Attrs Seed(
int64 x
)
Seed2
Attrs Seed2(
int64 x
)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tensorflow::ops::AllCandidateSampler Class Reference\n\ntensorflow::ops::AllCandidateSampler\n====================================\n\n`#include \u003ccandidate_sampling_ops.h\u003e`\n\nGenerates labels for candidate sampling with a learned unigram distribution.\n\nSummary\n-------\n\nSee explanations of candidate sampling and the data formats at go/candidate-sampling.\n\nFor each batch, this op picks a single set of sampled candidate labels.\n\nThe advantages of sampling candidates per-batch are simplicity and the possibility of efficient dense matrix multiplication. The disadvantage is that the sampled candidates must be chosen independently of the context and of the true labels.\n\nArgs:\n\n- scope: A [Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- true_classes: A batch_size \\* num_true matrix, in which each row contains the IDs of the num_true target_classes in the corresponding original label.\n- num_true: Number of true labels per context.\n- num_sampled: Number of candidates to produce.\n- unique: If unique is true, we sample with rejection, so that all sampled candidates in a batch are unique. This requires some approximation to estimate the post-rejection sampling probabilities.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/all-candidate-sampler/attrs#structtensorflow_1_1ops_1_1_all_candidate_sampler_1_1_attrs)):\n\n- seed: If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed.\n- seed2: An second seed to avoid seed collision.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sampled_candidates: A vector of length num_sampled, in which each element is the ID of a sampled candidate.\n- [Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) true_expected_count: A batch_size \\* num_true matrix, representing the number of times each candidate is expected to occur in a batch of sampled candidates. If unique=true, then this is a probability.\n- [Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sampled_expected_count: A vector of length num_sampled, for each sampled candidate representing the number of times the candidate is expected to occur in a batch of sampled candidates. If unique=true, then this is a probability.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [AllCandidateSampler](#classtensorflow_1_1ops_1_1_all_candidate_sampler_1aad2d9e73a8fc9a50a37699e20ebffa6a)`(const ::`[tensorflow::Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` true_classes, int64 num_true, int64 num_sampled, bool unique)` ||\n| [AllCandidateSampler](#classtensorflow_1_1ops_1_1_all_candidate_sampler_1ad1521c027811f7f0e056b87d12071a4e)`(const ::`[tensorflow::Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` true_classes, int64 num_true, int64 num_sampled, bool unique, const `[AllCandidateSampler::Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/all-candidate-sampler/attrs#structtensorflow_1_1ops_1_1_all_candidate_sampler_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_all_candidate_sampler_1a7cec3217c7f1b8bd521a0f7b8e1b93ff) | [Operation](/versions/r2.14/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [sampled_candidates](#classtensorflow_1_1ops_1_1_all_candidate_sampler_1a47ac61dc358107667c422fccbdd3418d) | `::`[tensorflow::Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [sampled_expected_count](#classtensorflow_1_1ops_1_1_all_candidate_sampler_1a53a987bbc8c5b035948259ba9c90aa20) | `::`[tensorflow::Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [true_expected_count](#classtensorflow_1_1ops_1_1_all_candidate_sampler_1ac46a1428d3dc734892084c568c632d09) | `::`[tensorflow::Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Seed](#classtensorflow_1_1ops_1_1_all_candidate_sampler_1a4ab278d6ad3303f8d03b47ce43637cf5)`(int64 x)` | [Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/all-candidate-sampler/attrs#structtensorflow_1_1ops_1_1_all_candidate_sampler_1_1_attrs) |\n| [Seed2](#classtensorflow_1_1ops_1_1_all_candidate_sampler_1a412dc3eb4a931969a4cd51ca7837131f)`(int64 x)` | [Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/all-candidate-sampler/attrs#structtensorflow_1_1ops_1_1_all_candidate_sampler_1_1_attrs) |\n\n| ### Structs ||\n|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::AllCandidateSampler::Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/all-candidate-sampler/attrs) | Optional attribute setters for [AllCandidateSampler](/versions/r2.14/api_docs/cc/class/tensorflow/ops/all-candidate-sampler#classtensorflow_1_1ops_1_1_all_candidate_sampler). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### sampled_candidates\n\n```scdoc\n::tensorflow::Output sampled_candidates\n``` \n\n### sampled_expected_count\n\n```scdoc\n::tensorflow::Output sampled_expected_count\n``` \n\n### true_expected_count\n\n```scdoc\n::tensorflow::Output true_expected_count\n``` \n\nPublic functions\n----------------\n\n### AllCandidateSampler\n\n```gdscript\n AllCandidateSampler(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input true_classes,\n int64 num_true,\n int64 num_sampled,\n bool unique\n)\n``` \n\n### AllCandidateSampler\n\n```gdscript\n AllCandidateSampler(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input true_classes,\n int64 num_true,\n int64 num_sampled,\n bool unique,\n const AllCandidateSampler::Attrs & attrs\n)\n``` \n\nPublic static functions\n-----------------------\n\n### Seed\n\n```text\nAttrs Seed(\n int64 x\n)\n``` \n\n### Seed2\n\n```text\nAttrs Seed2(\n int64 x\n)\n```"]]