Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::CropAndResizeGradImage
#include <image_ops.h>
Computes the gradient of the crop_and_resize op wrt the input image tensor.
Summary
Args:
- scope: A Scope object
- grads: A 4-D tensor of shape
[num_boxes, crop_height, crop_width, depth]
.
- boxes: A 2-D tensor of shape
[num_boxes, 4]
. The i
-th row of the tensor specifies the coordinates of a box in the box_ind[i]
image and is specified in normalized coordinates [y1, x1, y2, x2]
. A normalized coordinate value of y
is mapped to the image coordinate at y * (image_height - 1)
, so as the [0, 1]
interval of normalized image height is mapped to `[0, image_height - 1] in image height coordinates. We do allow y1 > y2, in which case the sampled crop is an up-down flipped version of the original image. The width dimension is treated similarly. Normalized coordinates outside the [0, 1]
range are allowed, in which case we use extrapolation_value
to extrapolate the input image values.
- box_ind: A 1-D tensor of shape
[num_boxes]
with int32 values in [0, batch)
. The value of box_ind[i]
specifies the image that the i
-th box refers to.
- image_size: A 1-D tensor with value
[batch, image_height, image_width, depth]
containing the original image size. Both image_height
and image_width
need to be positive.
Optional attributes (see Attrs
):
- method: A string specifying the interpolation method. Only 'bilinear' is supported for now.
Returns:
Output
: A 4-D tensor of shape [batch, image_height, image_width, depth]
.
Constructors and Destructors
|
CropAndResizeGradImage(const ::tensorflow::Scope & scope, ::tensorflow::Input grads, ::tensorflow::Input boxes, ::tensorflow::Input box_ind, ::tensorflow::Input image_size, DataType T)
|
CropAndResizeGradImage(const ::tensorflow::Scope & scope, ::tensorflow::Input grads, ::tensorflow::Input boxes, ::tensorflow::Input box_ind, ::tensorflow::Input image_size, DataType T, const CropAndResizeGradImage::Attrs & attrs)
|
Public static functions
|
Method(StringPiece x)
|
|
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
Method
Attrs Method(
StringPiece x
)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tensorflow::ops::CropAndResizeGradImage Class Reference\n\ntensorflow::ops::CropAndResizeGradImage\n=======================================\n\n`#include \u003cimage_ops.h\u003e`\n\nComputes the gradient of the crop_and_resize op wrt the input image tensor.\n\nSummary\n-------\n\nArgs:\n\n- scope: A [Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- grads: A 4-D tensor of shape `[num_boxes, crop_height, crop_width, depth]`.\n- boxes: A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensor specifies the coordinates of a box in the `box_ind[i]` image and is specified in normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image height is mapped to \\`\\[0, image_height - 1\\] in image height coordinates. We do allow y1 \\\u003e y2, in which case the sampled crop is an up-down flipped version of the original image. The width dimension is treated similarly. Normalized coordinates outside the `[0, 1]` range are allowed, in which case we use `extrapolation_value` to extrapolate the input image values.\n- box_ind: A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`. The value of `box_ind[i]` specifies the image that the `i`-th box refers to.\n- image_size: A 1-D tensor with value `[batch, image_height, image_width, depth]` containing the original image size. Both `image_height` and `image_width` need to be positive.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-image/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1_1_attrs)):\n\n- method: A string specifying the interpolation method. Only 'bilinear' is supported for now.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A 4-D tensor of shape `[batch, image_height, image_width, depth]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [CropAndResizeGradImage](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a542871b76c83a2a8ae095c5ade81ab0e)`(const ::`[tensorflow::Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grads, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` boxes, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` box_ind, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` image_size, DataType T)` ||\n| [CropAndResizeGradImage](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a5314c519439a0018be03ae0599c320d3)`(const ::`[tensorflow::Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grads, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` boxes, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` box_ind, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` image_size, DataType T, const `[CropAndResizeGradImage::Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-image/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1ad757af122f700a9ab5acbd38629f83fb) | [Operation](/versions/r2.14/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1adc227b21eb0d9d4ca672f34f67b7943d) | `::`[tensorflow::Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a614b37524e5b31e34837f59518d54830)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a561ea8804d44d30b5d50d84b6619a89c)`() const ` | |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a189d45da47ace193a132f998417286d2)`() const ` | |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Method](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a10a7af8fef715e541d4c1c1472871fa5)`(StringPiece x)` | [Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-image/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1_1_attrs) |\n\n| ### Structs ||\n|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::CropAndResizeGradImage::Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-image/attrs) | Optional attribute setters for [CropAndResizeGradImage](/versions/r2.14/api_docs/cc/class/tensorflow/ops/crop-and-resize-grad-image#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### CropAndResizeGradImage\n\n```gdscript\n CropAndResizeGradImage(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input grads,\n ::tensorflow::Input boxes,\n ::tensorflow::Input box_ind,\n ::tensorflow::Input image_size,\n DataType T\n)\n``` \n\n### CropAndResizeGradImage\n\n```gdscript\n CropAndResizeGradImage(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input grads,\n ::tensorflow::Input boxes,\n ::tensorflow::Input box_ind,\n ::tensorflow::Input image_size,\n DataType T,\n const CropAndResizeGradImage::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### Method\n\n```text\nAttrs Method(\n StringPiece x\n)\n```"]]