Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::SparseApplyFtrlV2
#include <training_ops.h>
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
Summary
That is for rows we have grad for, we update var, accum and linear as follows: grad_with_shrinkage = grad + 2 * l2_shrinkage * var accum_new = accum + grad * grad linear += grad_with_shrinkage - (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 accum = accum_new
Args:
- scope: A Scope object
- var: Should be from a Variable().
- accum: Should be from a Variable().
- linear: Should be from a Variable().
- grad: The gradient.
- indices: A vector of indices into the first dimension of var and accum.
- lr: Scaling factor. Must be a scalar.
- l1: L1 regularization. Must be a scalar.
- l2: L2 shrinkage regularization. Must be a scalar.
- lr_power: Scaling factor. Must be a scalar.
Optional attributes (see Attrs
):
- use_locking: If
True
, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
Returns:
Constructors and Destructors
|
SparseApplyFtrlV2(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power)
|
SparseApplyFtrlV2(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power, const SparseApplyFtrlV2::Attrs & attrs)
|
Public attributes
Public functions
SparseApplyFtrlV2
SparseApplyFtrlV2(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input accum,
::tensorflow::Input linear,
::tensorflow::Input grad,
::tensorflow::Input indices,
::tensorflow::Input lr,
::tensorflow::Input l1,
::tensorflow::Input l2,
::tensorflow::Input l2_shrinkage,
::tensorflow::Input lr_power
)
SparseApplyFtrlV2
SparseApplyFtrlV2(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input accum,
::tensorflow::Input linear,
::tensorflow::Input grad,
::tensorflow::Input indices,
::tensorflow::Input lr,
::tensorflow::Input l1,
::tensorflow::Input l2,
::tensorflow::Input l2_shrinkage,
::tensorflow::Input lr_power,
const SparseApplyFtrlV2::Attrs & attrs
)
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
MultiplyLinearByLr
Attrs MultiplyLinearByLr(
bool x
)
UseLocking
Attrs UseLocking(
bool x
)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tensorflow::ops::SparseApplyFtrlV2 Class Reference\n\ntensorflow::ops::SparseApplyFtrlV2\n==================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate relevant entries in '\\*var' according to the Ftrl-proximal scheme.\n\nSummary\n-------\n\nThat is for rows we have grad for, we update var, accum and linear as follows: grad_with_shrinkage = grad + 2 \\* l2_shrinkage \\* var accum_new = accum + grad \\* grad linear += grad_with_shrinkage - (accum_new\\^(-lr_power) - accum\\^(-lr_power)) / lr \\* var quadratic = 1.0 / (accum_new\\^(lr_power) \\* lr) + 2 \\* l2 var = (sign(linear) \\* l1 - linear) / quadratic if \\|linear\\| \\\u003e l1 else 0.0 accum = accum_new\n\nArgs:\n\n- scope: A [Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- accum: Should be from a Variable().\n- linear: Should be from a Variable().\n- grad: The gradient.\n- indices: A vector of indices into the first dimension of var and accum.\n- lr: Scaling factor. Must be a scalar.\n- l1: L1 regularization. Must be a scalar.\n- l2: L2 shrinkage regularization. Must be a scalar.\n- lr_power: Scaling factor. Must be a scalar.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/sparse-apply-ftrl-v2/attrs#structtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same as \"var\".\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseApplyFtrlV2](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2_1a5aac85294ef2fe3491d385699c320466)`(const ::`[tensorflow::Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` linear, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l1, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2_shrinkage, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr_power)` ||\n| [SparseApplyFtrlV2](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2_1abf2e6f5633ae8e3bf9dfbeb7222d1f5e)`(const ::`[tensorflow::Scope](/versions/r2.14/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` linear, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l1, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2_shrinkage, ::`[tensorflow::Input](/versions/r2.14/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr_power, const `[SparseApplyFtrlV2::Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/sparse-apply-ftrl-v2/attrs#structtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2_1a52c8adace57b2f5a40dba99db1ad4e88) | [Operation](/versions/r2.14/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [out](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2_1ae87d85671d97e97a7662c7c680fc8884) | `::`[tensorflow::Output](/versions/r2.14/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2_1ae9527252eb9b5e39d1cc50fe962c03dd)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2_1a1acf8e4ced3659d1ceecb99da65de05d)`() const ` | |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2_1ac88538dc7963ebfe36cb619839f53581)`() const ` | |\n\n| ### Public static functions ||\n|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|\n| [MultiplyLinearByLr](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2_1ade792da0a6f7add88bff4d13d98f32c3)`(bool x)` | [Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/sparse-apply-ftrl-v2/attrs#structtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2_1_1_attrs) |\n| [UseLocking](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2_1a0ca751635f400261887fe95775ea4c48)`(bool x)` | [Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/sparse-apply-ftrl-v2/attrs#structtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::SparseApplyFtrlV2::Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/sparse-apply-ftrl-v2/attrs) | Optional attribute setters for [SparseApplyFtrlV2](/versions/r2.14/api_docs/cc/class/tensorflow/ops/sparse-apply-ftrl-v2#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_v2). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### out\n\n```text\n::tensorflow::Output out\n``` \n\nPublic functions\n----------------\n\n### SparseApplyFtrlV2\n\n```gdscript\n SparseApplyFtrlV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input linear,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices,\n ::tensorflow::Input lr,\n ::tensorflow::Input l1,\n ::tensorflow::Input l2,\n ::tensorflow::Input l2_shrinkage,\n ::tensorflow::Input lr_power\n)\n``` \n\n### SparseApplyFtrlV2\n\n```gdscript\n SparseApplyFtrlV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input linear,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices,\n ::tensorflow::Input lr,\n ::tensorflow::Input l1,\n ::tensorflow::Input l2,\n ::tensorflow::Input l2_shrinkage,\n ::tensorflow::Input lr_power,\n const SparseApplyFtrlV2::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### MultiplyLinearByLr\n\n```text\nAttrs MultiplyLinearByLr(\n bool x\n)\n``` \n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]