Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::FractionalAvgPool::Attrs
#include <nn_ops.h>
Optional attribute setters for FractionalAvgPool.
Summary
Public functions
|
Deterministic(bool x)
|
When set to True, a fixed pooling region will be used when iterating over a FractionalAvgPool node in the computation graph.
|
Overlapping(bool x)
|
When set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells.
|
PseudoRandom(bool x)
|
When set to True, generates the pooling sequence in a pseudorandom fashion, otherwise, in a random fashion.
|
Seed(int64 x)
|
If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed.
|
Seed2(int64 x)
|
An second seed to avoid seed collision.
|
Public attributes
deterministic_
bool tensorflow::ops::FractionalAvgPool::Attrs::deterministic_ = false
overlapping_
bool tensorflow::ops::FractionalAvgPool::Attrs::overlapping_ = false
pseudo_random_
bool tensorflow::ops::FractionalAvgPool::Attrs::pseudo_random_ = false
seed2_
int64 tensorflow::ops::FractionalAvgPool::Attrs::seed2_ = 0
seed_
int64 tensorflow::ops::FractionalAvgPool::Attrs::seed_ = 0
Public functions
Deterministic
TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalAvgPool::Attrs::Deterministic(
bool x
)
When set to True, a fixed pooling region will be used when iterating over a FractionalAvgPool node in the computation graph.
Mainly used in unit test to make FractionalAvgPool deterministic.
Defaults to false
Overlapping
TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalAvgPool::Attrs::Overlapping(
bool x
)
When set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells.
For example:
index 0 1 2 3 4
value 20 5 16 3 7
If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. The result would be [41/3, 26/3] for fractional avg pooling.
Defaults to false
PseudoRandom
TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalAvgPool::Attrs::PseudoRandom(
bool x
)
When set to True, generates the pooling sequence in a pseudorandom fashion, otherwise, in a random fashion.
Check paper Benjamin Graham, Fractional Max-Pooling for difference between pseudorandom and random.
Defaults to false
Seed
TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalAvgPool::Attrs::Seed(
int64 x
)
If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed.
Otherwise, it is seeded by a random seed.
Defaults to 0
Seed2
TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalAvgPool::Attrs::Seed2(
int64 x
)
An second seed to avoid seed collision.
Defaults to 0
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tensorflow::ops::FractionalAvgPool::Attrs Struct Reference\n\ntensorflow::ops::FractionalAvgPool::Attrs\n=========================================\n\n`#include \u003cnn_ops.h\u003e`\n\nOptional attribute setters for [FractionalAvgPool](/versions/r2.14/api_docs/cc/class/tensorflow/ops/fractional-avg-pool#classtensorflow_1_1ops_1_1_fractional_avg_pool).\n\nSummary\n-------\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------------------------------|---------|\n| [deterministic_](#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs_1a61f280a9ce83539a26b89a4651db132c)` = false` | `bool` |\n| [overlapping_](#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs_1a50e61bdb802b360a726be83b8660daad)` = false` | `bool` |\n| [pseudo_random_](#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs_1afac27e665631052f0b4f64af3ceefcfe)` = false` | `bool` |\n| [seed2_](#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs_1a9faa5b56888e5aa067e9cc4e4ea0ff3a)` = 0` | `int64` |\n| [seed_](#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs_1adda88abb2a9de85ca5971ef4315d9bb6)` = 0` | `int64` |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Deterministic](#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs_1a873dc80042303bc7f645e56ebb80f7aa)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) When set to True, a fixed pooling region will be used when iterating over a [FractionalAvgPool](/versions/r2.14/api_docs/cc/class/tensorflow/ops/fractional-avg-pool#classtensorflow_1_1ops_1_1_fractional_avg_pool) node in the computation graph. |\n| [Overlapping](#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs_1a4e52f1f09ad181656cef01b39205ed6e)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) When set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells. |\n| [PseudoRandom](#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs_1ac235854793b77d8528a50eb19c7d3009)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) When set to True, generates the pooling sequence in a pseudorandom fashion, otherwise, in a random fashion. |\n| [Seed](#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs_1a44e0ebd8a59b50d13a18fcce75087c8c)`(int64 x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. |\n| [Seed2](#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs_1afc60d67272d3e8eea9e3da45b6b17d12)`(int64 x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.14/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) An second seed to avoid seed collision. |\n\nPublic attributes\n-----------------\n\n### deterministic_\n\n```scdoc\nbool tensorflow::ops::FractionalAvgPool::Attrs::deterministic_ = false\n``` \n\n### overlapping_\n\n```scdoc\nbool tensorflow::ops::FractionalAvgPool::Attrs::overlapping_ = false\n``` \n\n### pseudo_random_\n\n```scdoc\nbool tensorflow::ops::FractionalAvgPool::Attrs::pseudo_random_ = false\n``` \n\n### seed2_\n\n```scdoc\nint64 tensorflow::ops::FractionalAvgPool::Attrs::seed2_ = 0\n``` \n\n### seed_\n\n```scdoc\nint64 tensorflow::ops::FractionalAvgPool::Attrs::seed_ = 0\n``` \n\nPublic functions\n----------------\n\n### Deterministic\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalAvgPool::Attrs::Deterministic(\n bool x\n)\n``` \nWhen set to True, a fixed pooling region will be used when iterating over a [FractionalAvgPool](/versions/r2.14/api_docs/cc/class/tensorflow/ops/fractional-avg-pool#classtensorflow_1_1ops_1_1_fractional_avg_pool) node in the computation graph.\n\nMainly used in unit test to make [FractionalAvgPool](/versions/r2.14/api_docs/cc/class/tensorflow/ops/fractional-avg-pool#classtensorflow_1_1ops_1_1_fractional_avg_pool) deterministic.\n\nDefaults to false \n\n### Overlapping\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalAvgPool::Attrs::Overlapping(\n bool x\n)\n``` \nWhen set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells.\n\nFor example:\n\n\n`index 0 1 2 3 4`\n\n\n`value 20 5 16 3 7`\n\nIf the pooling sequence is \\[0, 2, 4\\], then 16, at index 2 will be used twice. The result would be \\[41/3, 26/3\\] for fractional avg pooling.\n\nDefaults to false \n\n### PseudoRandom\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalAvgPool::Attrs::PseudoRandom(\n bool x\n)\n``` \nWhen set to True, generates the pooling sequence in a pseudorandom fashion, otherwise, in a random fashion.\n\nCheck paper [Benjamin Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) for difference between pseudorandom and random.\n\nDefaults to false \n\n### Seed\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalAvgPool::Attrs::Seed(\n int64 x\n)\n``` \nIf either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed.\n\nOtherwise, it is seeded by a random seed.\n\nDefaults to 0 \n\n### Seed2\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalAvgPool::Attrs::Seed2(\n int64 x\n)\n``` \nAn second seed to avoid seed collision.\n\nDefaults to 0"]]