संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: क्वांटाइज़एंडडिक्वांटाइज़V2:: Attrs
#include <array_ops.h>
quantizeAndDequantizeV2 के लिए वैकल्पिक विशेषता सेटर्स।
सारांश
सार्वजनिक समारोह |
---|
Axis (int64 x) | यदि निर्दिष्ट किया गया है, तो इस अक्ष को एक चैनल या स्लाइस अक्ष के रूप में माना जाता है, और इस अक्ष के साथ प्रत्येक चैनल या स्लाइस के लिए एक अलग परिमाणीकरण सीमा का उपयोग किया जाता है। |
NarrowRange (bool x) | यदि सत्य है, तो परिमाणित न्यूनतम मान का निरपेक्ष मान परिमाणित अधिकतम मान के समान है, न कि 1 बड़ा। |
NumBits (int64 x) | परिमाणीकरण की बिटविड्थ. |
RangeGiven (bool x) | क्या रेंज दी गई है या input टेंसर से निर्धारित की जानी चाहिए। |
RoundMode (StringPiece x) | 'राउंड_मोड' विशेषता नियंत्रित करती है कि फ्लोट मानों को उनके परिमाणित समकक्षों में पूर्णांकित करते समय किस राउंडिंग टाई-ब्रेकिंग एल्गोरिदम का उपयोग किया जाता है। |
SignedInput (bool x) | चाहे परिमाणीकरण हस्ताक्षरित हो या अहस्ताक्षरित। |
सार्वजनिक गुण
अक्ष_
int64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::axis_ = -1
संकीर्ण रेंज_
bool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::narrow_range_ = false
num_bits_
int64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::num_bits_ = 8
रेंज_दिया गया_
bool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::range_given_ = false
राउंड_मोड_
StringPiece tensorflow::ops::QuantizeAndDequantizeV2::Attrs::round_mode_ = "HALF_TO_EVEN"
bool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::signed_input_ = true
सार्वजनिक समारोह
धुरी
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::Axis(
int64 x
)
यदि निर्दिष्ट किया गया है, तो इस अक्ष को एक चैनल या स्लाइस अक्ष के रूप में माना जाता है, और इस अक्ष के साथ प्रत्येक चैनल या स्लाइस के लिए एक अलग परिमाणीकरण सीमा का उपयोग किया जाता है।
-1 पर डिफ़ॉल्ट
संकीर्ण रेंज
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NarrowRange(
bool x
)
यदि सत्य है, तो परिमाणित न्यूनतम मान का निरपेक्ष मान परिमाणित अधिकतम मान के समान है, न कि 1 बड़ा।
यानी 8 बिट परिमाणीकरण के लिए, न्यूनतम मान -128 के बजाय -127 है।
डिफ़ॉल्ट से असत्य
संख्या बिट्स
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NumBits(
int64 x
)
परिमाणीकरण की बिटविड्थ.
8 पर डिफ़ॉल्ट
रेंज दिया गया
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RangeGiven(
bool x
)
क्या रेंज दी गई है या input
टेंसर से निर्धारित की जानी चाहिए।
डिफ़ॉल्ट से असत्य
राउंडमोड
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RoundMode(
StringPiece x
)
'राउंड_मोड' विशेषता नियंत्रित करती है कि फ्लोट मानों को उनके परिमाणित समकक्षों में पूर्णांकित करते समय किस राउंडिंग टाई-ब्रेकिंग एल्गोरिदम का उपयोग किया जाता है।
निम्नलिखित राउंडिंग मोड वर्तमान में समर्थित हैं:
- HALF_TO_EVEN: यह डिफ़ॉल्ट राउंड_मोड है।
- HALF_UP: सकारात्मक की ओर गोल। इस मोड में 8 तक 7.5 राउंड और -7 तक -7.5 राउंड होते हैं।
डिफ़ॉल्ट "HALF_TO_EVEN"
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::SignedInput(
bool x
)
चाहे परिमाणीकरण हस्ताक्षरित हो या अहस्ताक्षरित।
(वास्तव में इस पैरामीटर को signed_output
कहा जाना चाहिए था)
डिफ़ॉल्ट सत्य पर
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::QuantizeAndDequantizeV2::Attrs Struct Reference\n\ntensorflow::ops::QuantizeAndDequantizeV2::Attrs\n===============================================\n\n`#include \u003carray_ops.h\u003e`\n\nOptional attribute setters for [QuantizeAndDequantizeV2](/versions/r2.2/api_docs/cc/class/tensorflow/ops/quantize-and-dequantize-v2#classtensorflow_1_1ops_1_1_quantize_and_dequantize_v2).\n\nSummary\n-------\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------------------------------------|---------------|\n| [axis_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a315bdca31eedd36ca93926e243fa1936)` = -1` | `int64` |\n| [narrow_range_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1adf347e0c1f8214c14d7694ae285cc9d0)` = false` | `bool` |\n| [num_bits_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a11159f89f2414130b6a3ad313b27716c)` = 8` | `int64` |\n| [range_given_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a865cf4c82b9089b872eb9b918531f2db)` = false` | `bool` |\n| [round_mode_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a6dfc7a75f4a69171c6497bb1edfa0d05)` = \"HALF_TO_EVEN\"` | `StringPiece` |\n| [signed_input_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a790cd895eec69aba604ac8e9cb7f8a9f)` = true` | `bool` |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Axis](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a763f00e13bdab9fb43c917bbc70cf634)`(int64 x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) If specified, this axis is treated as a channel or slice axis, and a separate quantization range is used for each channel or slice along this axis. |\n| [NarrowRange](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1afaceca0792d45c8137aeb043c8cfda94)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) If True, then the absolute value of the quantized minimum value is the same as the quantized maximum value, instead of 1 greater. |\n| [NumBits](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a76057cdbc84759b92af376d7af6e5542)`(int64 x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) The bitwidth of the quantization. |\n| [RangeGiven](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a6fa06a82baf6f5d343626b0ff362f28b)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) Whether the range is given or should be determined from the `input` tensor. |\n| [RoundMode](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1abbc6241855f1eb74e6c30f9bb38a9bea)`(StringPiece x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) The 'round_mode' attribute controls which rounding tie-breaking algorithm is used when rounding float values to their quantized equivalents. |\n| [SignedInput](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1acc49af3428f348e5f27485c3d72e5598)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) Whether the quantization is signed or unsigned. |\n\nPublic attributes\n-----------------\n\n### axis_\n\n```scdoc\nint64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::axis_ = -1\n``` \n\n### narrow_range_\n\n```scdoc\nbool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::narrow_range_ = false\n``` \n\n### num_bits_\n\n```scdoc\nint64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::num_bits_ = 8\n``` \n\n### range_given_\n\n```scdoc\nbool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::range_given_ = false\n``` \n\n### round_mode_\n\n```scdoc\nStringPiece tensorflow::ops::QuantizeAndDequantizeV2::Attrs::round_mode_ = \"HALF_TO_EVEN\"\n``` \n\n### signed_input_\n\n```scdoc\nbool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::signed_input_ = true\n``` \n\nPublic functions\n----------------\n\n### Axis\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::Axis(\n int64 x\n)\n``` \nIf specified, this axis is treated as a channel or slice axis, and a separate quantization range is used for each channel or slice along this axis.\n\nDefaults to -1 \n\n### NarrowRange\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NarrowRange(\n bool x\n)\n``` \nIf True, then the absolute value of the quantized minimum value is the same as the quantized maximum value, instead of 1 greater.\n\ni.e. for 8 bit quantization, the minimum value is -127 instead of -128.\n\nDefaults to false \n\n### NumBits\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NumBits(\n int64 x\n)\n``` \nThe bitwidth of the quantization.\n\nDefaults to 8 \n\n### RangeGiven\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RangeGiven(\n bool x\n)\n``` \nWhether the range is given or should be determined from the `input` tensor.\n\nDefaults to false \n\n### RoundMode\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RoundMode(\n StringPiece x\n)\n``` \nThe 'round_mode' attribute controls which rounding tie-breaking algorithm is used when rounding float values to their quantized equivalents.\n\nThe following rounding modes are currently supported:\n\n\n- HALF_TO_EVEN: this is the default round_mode.\n- HALF_UP: round towards positive. In this mode 7.5 rounds up to 8 and -7.5 rounds up to -7.\n\n\u003cbr /\u003e\n\nDefaults to \"HALF_TO_EVEN\" \n\n### SignedInput\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::SignedInput(\n bool x\n)\n``` \nWhether the quantization is signed or unsigned.\n\n(actually this parameter should have been called **`signed_output`**)\n\nDefaults to true"]]