Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
przepływ tensorowy:: ops:: ZastosujWyśrodkowanyRMSPProp
#include <training_ops.h>
Zaktualizuj „*var” zgodnie z wyśrodkowanym algorytmem RMSProp.
Streszczenie
Wyśrodkowany algorytm RMSProp wykorzystuje oszacowanie wyśrodkowanego drugiego momentu (tj. wariancji) do normalizacji, w przeciwieństwie do zwykłego RMSProp, który wykorzystuje (niewyśrodkowany) drugi moment. Często pomaga to w treningu, ale jest nieco droższe pod względem obliczeń i pamięci.
Należy zauważyć, że w gęstej implementacji tego algorytmu mg, ms i mama zostaną zaktualizowane, nawet jeśli grad wynosi zero, ale w tej rzadkiej implementacji mg, ms i mama nie będą aktualizowane w iteracjach, podczas których grad wynosi zero.
średnia_kwadrat = zanik * średnia_kwadrat + (1-zanik) * gradient ** 2 średnia_grad = zanik * średnia_grad + (1-zanik) * gradient
Delta = współczynnik_uczenia się * gradient / sqrt(średnia_kwadrat + epsilon - średnia_grad** 2)
mg <- rho * mg_{t-1} + (1-rho) * grad ms <- rho * ms_{t-1} + (1-rho) * grad * grad mama <- pęd * mama_{t-1 } + lr * grad / sqrt(ms - mg * mg + epsilon) var <- var - mama
Argumenty:
- zakres: Obiekt Scope
- var: Powinien pochodzić ze zmiennej ().
- mg: powinno pochodzić ze zmiennej ().
- ms: Powinno pochodzić ze zmiennej ().
- mama: Powinno pochodzić ze zmiennej ().
- lr: Współczynnik skalowania. Musi być skalarem.
- rho: Szybkość zaniku. Musi być skalarem.
- epsilon: termin grzbietowy. Musi być skalarem.
- grad: gradient.
Opcjonalne atrybuty (patrz Attrs
):
- use_locking: Jeśli
True
, aktualizacja tensorów var, mg, ms i mama jest chroniona blokadą; w przeciwnym razie zachowanie jest niezdefiniowane, ale może wykazywać mniejszą rywalizację.
Zwroty:
-
Output
: takie same jak „var”.
Konstruktory i destruktory |
---|
ApplyCenteredRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input mg, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad)
|
ApplyCenteredRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input mg, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, const ApplyCenteredRMSProp::Attrs & attrs) |
Atrybuty publiczne
Funkcje publiczne
ZastosujWyśrodkowanyRMSPProp
ApplyCenteredRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input mg,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
::tensorflow::Input grad,
const ApplyCenteredRMSProp::Attrs & attrs
)
węzeł
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Wyjście
operator::tensorflow::Output() const
Publiczne funkcje statyczne
Użyj Blokowania
Attrs UseLocking(
bool x
)
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-27 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::ApplyCenteredRMSProp Class Reference\n\ntensorflow::ops::ApplyCenteredRMSProp\n=====================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the centered RMSProp algorithm.\n\nSummary\n-------\n\nThe centered RMSProp algorithm uses an estimate of the centered second moment (i.e., the variance) for normalization, as opposed to regular RMSProp, which uses the (uncentered) second moment. This often helps with training, but is slightly more expensive in terms of computation and memory.\n\nNote that in dense implementation of this algorithm, mg, ms, and mom will update even if the grad is zero, but in this sparse implementation, mg, ms, and mom will not update in iterations during which the grad is zero.\n\nmean_square = decay \\* mean_square + (1-decay) \\* gradient \\*\\* 2 mean_grad = decay \\* mean_grad + (1-decay) \\* gradient\n\nDelta = learning_rate \\* gradient / sqrt(mean_square + epsilon - mean_grad \\*\\* 2)\n\nmg \\\u003c- rho \\* mg_{t-1} + (1-rho) \\* grad ms \\\u003c- rho \\* ms_{t-1} + (1-rho) \\* grad \\* grad mom \\\u003c- momentum \\* mom_{t-1} + lr \\* grad / sqrt(ms - mg \\* mg + epsilon) var \\\u003c- var - mom\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- mg: Should be from a Variable().\n- ms: Should be from a Variable().\n- mom: Should be from a Variable().\n- lr: Scaling factor. Must be a scalar.\n- rho: Decay rate. Must be a scalar.\n- epsilon: Ridge term. Must be a scalar.\n- grad: The gradient.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/apply-centered-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var, mg, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same as \"var\".\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ApplyCenteredRMSProp](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1a4bd3dd81dc6d1695c9ad5728462dd8cd)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mg, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad)` ||\n| [ApplyCenteredRMSProp](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1a632653cb819d859518dab8ceb0e7601c)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mg, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const `[ApplyCenteredRMSProp::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/apply-centered-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1a1eed55db035d88dc72301a9da4440e4a) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [out](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1a62975e9d2166f002e315def153375125) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1aa871631223879c0e00dc1ad75118f3ad)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1a9c793c604a2790930231f4244e7118cb)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1a5506a3056061103ac1e9a7a48412a968)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1ace802790fc34b37dc6b7574ea6f55cea)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/apply-centered-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1_1_attrs) |\n\n| ### Structs ||\n|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ApplyCenteredRMSProp::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/apply-centered-r-m-s-prop/attrs) | Optional attribute setters for [ApplyCenteredRMSProp](/versions/r1.15/api_docs/cc/class/tensorflow/ops/apply-centered-r-m-s-prop#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### out\n\n```text\n::tensorflow::Output out\n``` \n\nPublic functions\n----------------\n\n### ApplyCenteredRMSProp\n\n```gdscript\n ApplyCenteredRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input mg,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad\n)\n``` \n\n### ApplyCenteredRMSProp\n\n```gdscript\n ApplyCenteredRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input mg,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n const ApplyCenteredRMSProp::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]