Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
przepływ tensorowy:: ops:: ZastosujRMSPProp
#include <training_ops.h>
Zaktualizuj „*var” zgodnie z algorytmem RMSProp.
Streszczenie
Należy zauważyć, że w gęstej implementacji tego algorytmu ms i mama zostaną zaktualizowane, nawet jeśli grad będzie wynosić zero, ale w tej rzadkiej implementacji ms i mama nie będą aktualizować się w iteracjach, podczas których grad będzie wynosić zero.
średnia_kwadrat = zanik * średnia_kwadrat + (1-zanik) * gradient ** 2 Delta = szybkość_uczenia się * gradient / sqrt(średnia_kwadrat + epsilon)
ms <- rho * ms_{t-1} + (1-rho) * grad * grad mama <- pęd * mama_{t-1} + lr * grad / sqrt(ms + epsilon) var <- var - mama
Argumenty:
- zakres: Obiekt Scope
- var: Powinien pochodzić ze zmiennej ().
- ms: Powinno pochodzić ze zmiennej ().
- mama: Powinno pochodzić ze zmiennej ().
- lr: Współczynnik skalowania. Musi być skalarem.
- rho: Szybkość zaniku. Musi być skalarem.
- epsilon: termin grzbietowy. Musi być skalarem.
- grad: gradient.
Opcjonalne atrybuty (patrz Attrs
):
- use_locking: Jeśli
True
, aktualizacja tensorów var, ms i mama jest chroniona blokadą; w przeciwnym razie zachowanie jest niezdefiniowane, ale może wykazywać mniejszą rywalizację.
Zwroty:
Konstruktory i destruktory |
---|
ResourceApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad)
|
ResourceApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, const ResourceApplyRMSProp::Attrs & attrs) |
Atrybuty publiczne
Funkcje publiczne
operator::tensorflow::Operacja
operator::tensorflow::Operation() const
Publiczne funkcje statyczne
Użyj Blokowania
Attrs UseLocking(
bool x
)
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-25 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::ResourceApplyRMSProp Class Reference\n\ntensorflow::ops::ResourceApplyRMSProp\n=====================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the RMSProp algorithm.\n\nSummary\n-------\n\nNote that in dense implementation of this algorithm, ms and mom will update even if the grad is zero, but in this sparse implementation, ms and mom will not update in iterations during which the grad is zero.\n\nmean_square = decay \\* mean_square + (1-decay) \\* gradient \\*\\* 2 Delta = learning_rate \\* gradient / sqrt(mean_square + epsilon)\n\nms \\\u003c- rho \\* ms_{t-1} + (1-rho) \\* grad \\* grad mom \\\u003c- momentum \\* mom_{t-1} + lr \\* grad / sqrt(ms + epsilon) var \\\u003c- var - mom\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- ms: Should be from a Variable().\n- mom: Should be from a Variable().\n- lr: Scaling factor. Must be a scalar.\n- rho: Decay rate. Must be a scalar.\n- epsilon: Ridge term. Must be a scalar.\n- grad: The gradient.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- the created [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation)\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ResourceApplyRMSProp](#classtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1ae91eb1e2b6b3e0c166963715954c5122)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad)` ||\n| [ResourceApplyRMSProp](#classtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1a75df67ab1eea661cf727de50a0a7fb98)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const `[ResourceApplyRMSProp::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1a48b8adc2f5de282222027a49c23ff42d) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------------------|---------|\n| [operator::tensorflow::Operation](#classtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1afe6e89eae46d27e22c2ac94cc2c7aadc)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1aacf915d8791a673d2e19b0af3d86af3a)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop_1_1_attrs) |\n\n| ### Structs ||\n|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ResourceApplyRMSProp::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-r-m-s-prop/attrs) | Optional attribute setters for [ResourceApplyRMSProp](/versions/r1.15/api_docs/cc/class/tensorflow/ops/resource-apply-r-m-s-prop#classtensorflow_1_1ops_1_1_resource_apply_r_m_s_prop). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### ResourceApplyRMSProp\n\n```gdscript\n ResourceApplyRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad\n)\n``` \n\n### ResourceApplyRMSProp\n\n```gdscript\n ResourceApplyRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n const ResourceApplyRMSProp::Attrs & attrs\n)\n``` \n\n### operator::tensorflow::Operation\n\n```gdscript\n operator::tensorflow::Operation() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]