সেভ করা পৃষ্ঠা গুছিয়ে রাখতে 'সংগ্রহ' ব্যবহার করুন
আপনার পছন্দ অনুযায়ী কন্টেন্ট সেভ করুন ও সঠিক বিভাগে রাখুন।
টেনসরফ্লো :: অপস:: Conv2D:: Attrs
#include <nn_ops.h>
Conv2D- এর জন্য ঐচ্ছিক বৈশিষ্ট্য নির্ধারণকারী।
সারাংশ
পাবলিক ফাংশন |
---|
DataFormat (StringPiece x) | ইনপুট এবং আউটপুট ডেটার ডেটা বিন্যাস উল্লেখ করুন। |
Dilations (const gtl::ArraySlice< int > & x) | দৈর্ঘ্যের 1-D টেনসর 4. |
ExplicitPaddings (const gtl::ArraySlice< int > & x) | যদি padding "EXPLICIT" হয়, তাহলে স্পষ্ট প্যাডিং পরিমাণের তালিকা৷ |
UseCudnnOnGpu (bool x) | ডিফল্ট থেকে সত্য। |
পাবলিক বৈশিষ্ট্য
StringPiece tensorflow::ops::Conv2D::Attrs::data_format_ = "NHWC"
প্রসারণ_
gtl::ArraySlice< int > tensorflow::ops::Conv2D::Attrs::dilations_ = Default_dilations()
স্পষ্ট_প্যাডিং_
gtl::ArraySlice< int > tensorflow::ops::Conv2D::Attrs::explicit_paddings_ = {}
ব্যবহার করুন
bool tensorflow::ops::Conv2D::Attrs::use_cudnn_on_gpu_ = true
পাবলিক ফাংশন
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::DataFormat(
StringPiece x
)
ইনপুট এবং আউটপুট ডেটার ডেটা বিন্যাস উল্লেখ করুন।
ডিফল্ট বিন্যাস "NHWC" এর সাথে, ডেটা এই ক্রমে সংরক্ষণ করা হয়: [ব্যাচ, উচ্চতা, প্রস্থ, চ্যানেল]। বিকল্পভাবে, বিন্যাসটি "NCHW" হতে পারে, এর ডেটা স্টোরেজ অর্ডার: [ব্যাচ, চ্যানেল, উচ্চতা, প্রস্থ]।
ডিফল্ট "NHWC"
প্রসারণ
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::Dilations(
const gtl::ArraySlice< int > & x
)
দৈর্ঘ্যের 1-D টেনসর 4.
input
প্রতিটি মাত্রার জন্য প্রসারিত ফ্যাক্টর। k > 1 তে সেট করা হলে, সেই মাত্রার প্রতিটি ফিল্টার উপাদানের মধ্যে k-1 এড়িয়ে যাওয়া ঘর থাকবে। মাত্রার ক্রম data_format
এর মান দ্বারা নির্ধারিত হয়, বিশদ বিবরণের জন্য উপরে দেখুন। ব্যাচের প্রসারণ এবং গভীরতার মাত্রা অবশ্যই 1 হতে হবে।
ডিফল্টে [1, 1, 1, 1]
স্পষ্ট প্যাডিংস
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::ExplicitPaddings(
const gtl::ArraySlice< int > & x
)
যদি padding
"EXPLICIT"
হয়, তাহলে স্পষ্ট প্যাডিং পরিমাণের তালিকা৷
ith ডাইমেনশনের জন্য, ডাইমেনশনের আগে এবং পরে যে পরিমাণ প্যাডিং ঢোকানো হয়েছে তা হল যথাক্রমে explicit_paddings[2 * i]
এবং explicit_paddings[2 * i + 1]
। যদি padding
"EXPLICIT"
না হয়, explicit_paddings
খালি হতে হবে।
ডিফল্ট থেকে []
CudnnOnGpu ব্যবহার করুন
TF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::UseCudnnOnGpu(
bool x
)
অন্য কিছু উল্লেখ না করা থাকলে, এই পৃষ্ঠার কন্টেন্ট Creative Commons Attribution 4.0 License-এর অধীনে এবং কোডের নমুনাগুলি Apache 2.0 License-এর অধীনে লাইসেন্স প্রাপ্ত। আরও জানতে, Google Developers সাইট নীতি দেখুন। Java হল Oracle এবং/অথবা তার অ্যাফিলিয়েট সংস্থার রেজিস্টার্ড ট্রেডমার্ক।
2025-07-25 UTC-তে শেষবার আপডেট করা হয়েছে।
[null,null,["2025-07-25 UTC-তে শেষবার আপডেট করা হয়েছে।"],[],[],null,["# tensorflow::ops::Conv2D::Attrs Struct Reference\n\ntensorflow::ops::Conv2D::Attrs\n==============================\n\n`#include \u003cnn_ops.h\u003e`\n\nOptional attribute setters for [Conv2D](/versions/r1.15/api_docs/cc/class/tensorflow/ops/conv2-d#classtensorflow_1_1ops_1_1_conv2_d).\n\nSummary\n-------\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------------------------|--------------------------|\n| [data_format_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a826b92a551e53c7d7e3f8990dbbdc328)` = \"NHWC\"` | `StringPiece` |\n| [dilations_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a38cfe8f5a9fd31568b79caff3d5db53f)` = Default_dilations()` | `gtl::ArraySlice\u003c int \u003e` |\n| [explicit_paddings_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1af6a0a48d47098676589b0c23d6615b73)` = {}` | `gtl::ArraySlice\u003c int \u003e` |\n| [use_cudnn_on_gpu_](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1ac0181cd1c99e758fff22f356f9c51f12)` = true` | `bool` |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1abafbedb30c29ed091ff37895bd8b6c6a)`(StringPiece x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) Specify the data format of the input and output data. |\n| [Dilations](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a16869b39ea0a373acb40566ed4235eb1)`(const gtl::ArraySlice\u003c int \u003e & x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) 1-D tensor of length 4. |\n| [ExplicitPaddings](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a69865f8fd6ea1e16ccc3e4b794ed3b56)`(const gtl::ArraySlice\u003c int \u003e & x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) If `padding` is `\"EXPLICIT\"`, the list of explicit padding amounts. |\n| [UseCudnnOnGpu](#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs_1a6fb079456a188df93e329f61671ff674)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/conv2-d/attrs#structtensorflow_1_1ops_1_1_conv2_d_1_1_attrs) Defaults to true. |\n\nPublic attributes\n-----------------\n\n### data_format_\n\n```scdoc\nStringPiece tensorflow::ops::Conv2D::Attrs::data_format_ = \"NHWC\"\n``` \n\n### dilations_\n\n```scdoc\ngtl::ArraySlice\u003c int \u003e tensorflow::ops::Conv2D::Attrs::dilations_ = Default_dilations()\n``` \n\n### explicit_paddings_\n\n```scdoc\ngtl::ArraySlice\u003c int \u003e tensorflow::ops::Conv2D::Attrs::explicit_paddings_ = {}\n``` \n\n### use_cudnn_on_gpu_\n\n```scdoc\nbool tensorflow::ops::Conv2D::Attrs::use_cudnn_on_gpu_ = true\n``` \n\nPublic functions\n----------------\n\n### DataFormat\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::DataFormat(\n StringPiece x\n)\n``` \nSpecify the data format of the input and output data.\n\nWith the default format \"NHWC\", the data is stored in the order of: \\[batch, height, width, channels\\]. Alternatively, the format could be \"NCHW\", the data storage order of: \\[batch, channels, height, width\\].\n\nDefaults to \"NHWC\" \n\n### Dilations\n\n```gdscript\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \n1-D tensor of length 4.\n\nThe dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\nDefaults to \\[1, 1, 1, 1\\] \n\n### ExplicitPaddings\n\n```gdscript\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::ExplicitPaddings(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \nIf `padding` is `\"EXPLICIT\"`, the list of explicit padding amounts.\n\nFor the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `\"EXPLICIT\"`, `explicit_paddings` must be empty.\n\nDefaults to \\[\\] \n\n### UseCudnnOnGpu\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2D::Attrs::UseCudnnOnGpu(\n bool x\n)\n``` \nDefaults to true."]]