Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: Mettere in ordine
#include <math_ops.h>
Classifica gli "input" in base ai "confini".
Riepilogo
Ad esempio, se gli input sono limiti = [0, 10, 100] input = [[-5, 10000] [150, 10] [5, 100]]
quindi l'output sarà = [[0, 3] [3, 2] [1, 3]]
Argomenti:
- scope: un oggetto Scope
- input: qualsiasi forma di Tensor contiene tipo int o float.
- confini: un elenco ordinato di float fornisce il confine dei bucket.
Resi:
-
Output
: stessa forma con "input", ogni valore di input sostituito con l'indice del bucket.
(numpy) Equivalente a np.digitize.
Attributi pubblici
Funzioni pubbliche
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatore::tensorflow::Output
operator::tensorflow::Output() const
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::Bucketize Class Reference\n\ntensorflow::ops::Bucketize\n==========================\n\n`#include \u003cmath_ops.h\u003e`\n\nBucketizes 'input' based on 'boundaries'.\n\nSummary\n-------\n\nFor example, if the inputs are boundaries = \\[0, 10, 100\\] input = \\[\\[-5, 10000\\] \\[150, 10\\] \\[5, 100\\]\\]\n\nthen the output will be output = \\[\\[0, 3\\] \\[3, 2\\] \\[1, 3\\]\\]\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: [Any](/versions/r2.0/api_docs/cc/class/tensorflow/ops/any#classtensorflow_1_1ops_1_1_any) shape of [Tensor](/versions/r2.0/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) contains with int or float type.\n- boundaries: A sorted list of floats gives the boundary of the buckets.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same shape with 'input', each value of input replaced with bucket index.\n\n\u003cbr /\u003e\n\n(numpy) Equivalent to np.digitize.\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Bucketize](#classtensorflow_1_1ops_1_1_bucketize_1a104987760896f84594d21a17738a6fe1)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, const gtl::ArraySlice\u003c float \u003e & boundaries)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_bucketize_1a11d9d7e39578db3e3dfaf2ef9213ae34) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_bucketize_1aa111bb19d459f3f26ae8f03297739125) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_bucketize_1af82e929e268a0301d7ce4c41480a19e4)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_bucketize_1a7d66691237f8de46ab0c52782419cf53)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_bucketize_1aa3f697a162b180d9aa7847cb7d22dc3e)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Bucketize\n\n```gdscript\n Bucketize(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n const gtl::ArraySlice\u003c float \u003e & boundaries\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]