Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: SparseFillEmptyRows
#include <sparse_ops.h>
Riempie le righe vuote nell'input 2-D SparseTensor
con un valore predefinito.
Riepilogo
L'input SparseTensor
è rappresentato tramite la tupla di input ( indices
, values
, dense_shape
). L'output SparseTensor
ha la stessa dense_shape
ma con indici output_indices
e valori output_values
.
Questa operazione inserisce una singola voce per ogni riga che non ha valori. L'indice viene creato come [row, 0, ..., 0]
e il valore inserito è default_value
.
Ad esempio, supponiamo che sp_input
abbia forma [5, 6]
e valori non vuoti:
[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d
Le righe 1 e 4 sono vuote, quindi l'output avrà la forma [5, 6]
con valori:
[0, 1]: a
[0, 3]: b
[1, 0]: default_value
[2, 0]: c
[3, 1]: d
[4, 0]: default_value
L'output SparseTensor
sarà in ordine di riga maggiore e avrà la stessa forma dell'input.
Questa operazione restituisce anche un vettore indicatore a forma di [dense_shape[0]]
in modo tale che
empty_row_indicator[i] = True iff row i was an empty row.
E un vettore di mappa dell'indice inverso a forma di [indices.shape[0]]
che viene utilizzato durante la propagazione all'indietro,
reverse_index_map[j] = out_j s.t. indices[j, :] == output_indices[out_j, :]
Argomenti:
- scope: un oggetto Scope
- indici: 2-D. gli indici del tensore sparso.
- valori: 1-D. i valori del tensore sparso.
- forma_densa: 1-D. la forma del tensore sparso.
- valore_predefinito: 0-D. valore predefinito da inserire nella posizione
[row, 0, ..., 0]
per le righe mancanti dal tensore sparso di input. indici di uscita: 2-D. gli indici del tensore sparso riempito.
Resi:
-
Output
indici_output -
Output
valori_output: 1-D. i valori del tensore sparso riempito. -
Output
indicatore_riga_vuota: 1-D. se la riga densa mancava nel tensore sparso di input. -
Output
reverse_index_map: 1-D. una mappa dagli indici di input agli indici di output.
Attributi pubblici
Funzioni pubbliche
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::SparseFillEmptyRows Class Reference\n\ntensorflow::ops::SparseFillEmptyRows\n====================================\n\n`#include \u003csparse_ops.h\u003e`\n\nFills empty rows in the input 2-D `SparseTensor` with a default value.\n\nSummary\n-------\n\nThe input `SparseTensor` is represented via the tuple of inputs (`indices`, `values`, `dense_shape`). The output `SparseTensor` has the same `dense_shape` but with indices `output_indices` and values `output_values`.\n\nThis op inserts a single entry for every row that doesn't have any values. The index is created as `[row, 0, ..., 0]` and the inserted value is `default_value`.\n\nFor example, suppose `sp_input` has shape `[5, 6]` and non-empty values: \n\n```text\n[0, 1]: a\n[0, 3]: b\n[2, 0]: c\n[3, 1]: d\n```\n\n\u003cbr /\u003e\n\nRows 1 and 4 are empty, so the output will be of shape `[5, 6]` with values: \n\n```scdoc\n[0, 1]: a\n[0, 3]: b\n[1, 0]: default_value\n[2, 0]: c\n[3, 1]: d\n[4, 0]: default_value\n```\n\n\u003cbr /\u003e\n\nThe output `SparseTensor` will be in row-major order and will have the same shape as the input.\n\nThis op also returns an indicator vector shaped `[dense_shape[0]]` such that \n\n```transact-sql\nempty_row_indicator[i] = True iff row i was an empty row.\n```\n\n\u003cbr /\u003e\n\nAnd a reverse index map vector shaped `[indices.shape[0]]` that is used during backpropagation, \n\n```transact-sql\nreverse_index_map[j] = out_j s.t. indices[j, :] == output_indices[out_j, :]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- indices: 2-D. the indices of the sparse tensor.\n- values: 1-D. the values of the sparse tensor.\n- dense_shape: 1-D. the shape of the sparse tensor.\n- default_value: 0-D. default value to insert into location `[row, 0, ..., 0]` for rows missing from the input sparse tensor. output indices: 2-D. the indices of the filled sparse tensor.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_indices\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_values: 1-D. the values of the filled sparse tensor.\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) empty_row_indicator: 1-D. whether the dense row was missing in the input sparse tensor.\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) reverse_index_map: 1-D. a map from the input indices to the output indices.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseFillEmptyRows](#classtensorflow_1_1ops_1_1_sparse_fill_empty_rows_1a879e72f00ec2907ae24319568619e724)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` values, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` dense_shape, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` default_value)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [empty_row_indicator](#classtensorflow_1_1ops_1_1_sparse_fill_empty_rows_1adb1b94f12679619031e52393d4dde736) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_sparse_fill_empty_rows_1a904fc23a9366dfb3edb6e9ce97f51176) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_indices](#classtensorflow_1_1ops_1_1_sparse_fill_empty_rows_1a2e77eb808d738a81625bc66d14e269c2) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_values](#classtensorflow_1_1ops_1_1_sparse_fill_empty_rows_1a050f6a03931adf4b1fe9fe0933537d4f) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [reverse_index_map](#classtensorflow_1_1ops_1_1_sparse_fill_empty_rows_1af0519edc8137614dd36f96f10ed6e4ef) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### empty_row_indicator\n\n```scdoc\n::tensorflow::Output empty_row_indicator\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_indices\n\n```scdoc\n::tensorflow::Output output_indices\n``` \n\n### output_values\n\n```scdoc\n::tensorflow::Output output_values\n``` \n\n### reverse_index_map\n\n```scdoc\n::tensorflow::Output reverse_index_map\n``` \n\nPublic functions\n----------------\n\n### SparseFillEmptyRows\n\n```gdscript\n SparseFillEmptyRows(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input indices,\n ::tensorflow::Input values,\n ::tensorflow::Input dense_shape,\n ::tensorflow::Input default_value\n)\n```"]]