টেনসরফ্লো :: অপস:: টেনসরম্যাপ থেকে অনেক স্পারস নিন
#include <sparse_ops.h>একটি স্পার্স উপস্থাপনাকে ঘন টেনসরে রূপান্তরিত করে।
সারাংশ
 আকার output_shape সহ একটি অ্যারে dense তৈরি করে যেটি
যদি sparse_indexs স্কেলার হয়
ঘন [i] = (i == sparse_indexes ? sparse_values : default_value)
যদি sparse_indices একটি ভেক্টর হয়, তাহলে প্রতিটি i এর জন্য
ঘনত্ব
যদি sparse_indices একটি n দ্বারা d ম্যাট্রিক্স হয়, তাহলে [0, n) প্রতিটি i-এর জন্য
ঘন[স্পার্স_সূচক[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i]
All other values in `dense` are set to `default_value`. If `sparse_values` is a scalar, all sparse indices are set to this single value.
Indices should be sorted in lexicographic order, and indices must not contain any repeats. If `validate_indices` is true, these properties are checked during execution.
Arguments: * scope: A Scope object * sparse_indices: 0-D, 1-D, or 2-D. `sparse_indices[i]` contains the complete index where `sparse_values[i]` will be placed. * output_shape: 1-D. Shape of the dense output tensor. * sparse_values: 1-D. Values corresponding to each row of `sparse_indices`, or a scalar value to be used for all sparse indices. * default_value: Scalar value to set for indices not specified in `sparse_indices`.
Optional attributes (see `Attrs`): * validate_indices: If true, indices are checked to make sure they are sorted in lexicographic order and that there are no repeats.
Returns: * `Output`: Dense output tensor of shape `output_shape`. */ class SparseToDense { public: /// Optional attribute setters for SparseToDense struct Attrs { /** If true, indices are checked to make sure they are sorted in lexicographic order and that there are no repeats.
        Defaults to true */
    TF_MUST_USE_RESULT Attrs ValidateIndices(bool x) {
      Attrs ret = *this;
      ret.validate_indices_ = x;
      return ret;
    }bool validate_indices_ = true; }; SparseToDense(const tensorflow::Scope& scope, tensorflow::Input sparse_indices, tensorflow::Input output_shape, tensorflow::Input sparse_values, tensorflow::Input default_value); SparseToDense(const tensorflow::Scope& scope, tensorflow::Input sparse_indices, tensorflow::Input output_shape, tensorflow::Input sparse_values, tensorflow::Input default_value, const SparseToDense::Attrs& attrs); operator ::tensorflow::Output() const { return dense; } operator ::tensorflow::Input() const { return dense; } ::tensorflow::Node* node() const { return dense.node(); }
static Attrs ValidateIndices(bool x) { return Attrs().ValidateIndices(x); }
Operation operation; tensorflow::Output dense; };
/** Read `SparseTensors` from a `SparseTensorsMap` and concatenate them.The input `sparse_handles` must be an `int64` matrix of shape `[N, 1]` where `N` is the minibatch size and the rows correspond to the output handles of `AddSparseToTensorsMap` or `AddManySparseToTensorsMap`. The ranks of the original `SparseTensor` objects that went into the given input ops must all match. When the final `SparseTensor` is created, it has rank one higher than the ranks of the incoming `SparseTensor` objects (they have been concatenated along a new row dimension on the left).
The output `SparseTensor` object's shape values for all dimensions but the first are the max across the input `SparseTensor` objects' shape values for the corresponding dimensions. Its first shape value is `N`, the minibatch size.
The input `SparseTensor` objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run `SparseReorder` to restore index ordering.
For example, if the handles represent an input, which is a `[2, 3]` matrix representing two original `SparseTensor` objects:
index = [ 0] [10] [20] values = [1, 2, 3] shape = [50]
and
index = [ 2] [10] values = [4, 5] shape = [30]
then the final `SparseTensor` will be:
index = [0 0] [0 10] [0 20] [1 2] [1 10] values = [1, 2, 3, 4, 5] shape = [2 50] ```Arguments:
- scope: A Scope object
- sparse_handles: 1-D, The NserializedSparseTensorobjects. Shape:[N].
- dtype: The dtypeof theSparseTensorobjects stored in theSparseTensorsMap.
Optional attributes (see Attrs):
- container: The container name for the SparseTensorsMapread by this op.
- shared_name: The shared name for the SparseTensorsMapread by this op. It should not be blank; rather theshared_nameor unique Operation name of the Op that created the originalSparseTensorsMapshould be used.
Returns:
- Outputsparse_indices: 2-D. The- indicesof the minibatch- SparseTensor.
- Outputsparse_values: 1-D. The- valuesof the minibatch- SparseTensor.
- Outputsparse_shape: 1-D. The- shapeof the minibatch- SparseTensor.
| Constructors and Destructors | |
|---|---|
| TakeManySparseFromTensorsMap(const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype) | |
| TakeManySparseFromTensorsMap(const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype, const TakeManySparseFromTensorsMap::Attrs & attrs) | 
| Public attributes | |
|---|---|
| operation | |
| sparse_indices | |
| sparse_shape | |
| sparse_values | |
| Public static functions | |
|---|---|
| Container(StringPiece x) | |
| SharedName(StringPiece x) | |
| Structs | |
|---|---|
| tensorflow:: | Optional attribute setters for TakeManySparseFromTensorsMap. | 
Public attributes
sparse_index
::tensorflow::Output sparse_indices
sparse_shape
::tensorflow::Output sparse_shape
sparse_values
::tensorflow::Output sparse_values
পাবলিক ফাংশন
টেনসরম্যাপ থেকে অনেক স্পারস নিন
TakeManySparseFromTensorsMap( const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype )
টেনসরম্যাপ থেকে অনেক স্পারস নিন
TakeManySparseFromTensorsMap( const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype, const TakeManySparseFromTensorsMap::Attrs & attrs )
পাবলিক স্ট্যাটিক ফাংশন
ধারক
Attrs Container( StringPiece x )
শেয়ার করা নাম
Attrs SharedName( StringPiece x )