संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: बैचटूस्पेसएनडी
#include <array_ops.h>
प्रकार टी के एनडी टेंसर के लिए बैचटूस्पेस।
सारांश
यह ऑपरेशन "बैच" आयाम 0 को M + 1
आयाम block_shape + [batch]
में दोबारा आकार देता है, इन ब्लॉकों को स्थानिक आयामों [1, ..., M]
द्वारा परिभाषित ग्रिड में वापस छोड़ देता है, ताकि परिणाम प्राप्त हो सके। इनपुट के समान रैंक। इस मध्यवर्ती परिणाम के स्थानिक आयामों को आउटपुट उत्पन्न करने के लिए crops
के अनुसार वैकल्पिक रूप से काटा जाता है। यह SpaceToBatch का उल्टा है। सटीक विवरण के लिए नीचे देखें।
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- इनपुट: एनडी आकार के साथ
input_shape = [batch] + spatial_shape + remaining_shape
, जहां स्थानिक_आकार में एम आयाम हैं। - ब्लॉक_शेप: आकार
[M]
के साथ 1-डी, सभी मान >= 1 होने चाहिए। - फसलें: 2-डी आकार के साथ
[M, 2]
, सभी मान >= 0 होने चाहिए crops[i] = [crop_start, crop_end]
इनपुट आयाम i + 1
से फसल की मात्रा निर्दिष्ट करता है, जो स्थानिक आयाम i
से मेल खाता है। यह आवश्यक है कि crop_start[i] + crop_end[i] <= block_shape[i] * input_shape[i + 1]
यह ऑपरेशन निम्नलिखित चरणों के बराबर है:
- आकार को दोबारा
reshaped
के लिए input
दोबारा आकार दें: [ब्लॉक_शेप[0], ..., ब्लॉक_शेप[एम-1], बैच/प्रोड(ब्लॉक_शेप), इनपुट_शेप[1], ..., इनपुट_शेप[एन-1]] - आकार के
permuted
उत्पादन के लिए पुन reshaped
के आयामों को क्रमबद्ध करें [बैच / उत्पाद (ब्लॉक_शेप), इनपुट_शेप[1], ब्लॉक_शेप[0], ..., इनपुट_शेप[एम], ब्लॉक_शेप[एम-1],इनपुट_शेप[एम+1], ..., इनपुट_आकार[एन-1]] - आकार के पुन:
reshaped_permuted
का उत्पादन करने के लिए permuted
[बैच / उत्पाद (ब्लॉक_शेप), इनपुट_शेप [1] * ब्लॉक_शेप [0], ..., इनपुट_शेप [एम] * ब्लॉक_शेप [एम -1], इनपुट_शेप [एम + 1], .. ., इनपुट_आकार[एन-1]] - आकार का आउटपुट उत्पन्न करने के लिए
crops
के अनुसार reshaped_permuted
आयामों [1, ..., M]
के प्रारंभ और अंत को काटें: [बैच / प्रोड (ब्लॉक_शेप), इनपुट_शेप [1] * ब्लॉक_शेप [0] - फसलें [0, 0] - फसलें[0,1], ..., इनपुट_आकार[एम] * ब्लॉक_आकार[एम-1] - फसलें[एम-1,0] - फसलें[एम-1,1],इनपुट_आकार[एम+1] , ..., इनपुट_शेप[एन-1]]
कुछ उदाहरण:
(1) आकार के निम्नलिखित इनपुट के लिए [4, 1, 1, 1]
, block_shape = [2, 2]
, और crops = [[0, 0], [0, 0]]
:
[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]
आउटपुट टेंसर का आकार [1, 2, 2, 1]
और मान है:
x = [[[[1], [2]], [[3], [4]]]]
(2) आकृति के निम्नलिखित इनपुट के लिए [4, 1, 1, 3]
, block_shape = [2, 2]
, और crops = [[0, 0], [0, 0]]
:
[[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]]
आउटपुट टेंसर का आकार [1, 2, 2, 3]
और मान है:
x = [[[[1, 2, 3], [4, 5, 6]],
[[7, 8, 9], [10, 11, 12]]]]
(3) आकृति के निम्नलिखित इनपुट के लिए [4, 2, 2, 1]
, block_shape = [2, 2]
, और crops = [[0, 0], [0, 0]]
:
x = [[[[1], [3]], [[9], [11]]],
[[[2], [4]], [[10], [12]]],
[[[5], [7]], [[13], [15]]],
[[[6], [8]], [[14], [16]]]]
आउटपुट टेंसर का आकार [1, 4, 4, 1]
और मान है:
x = [[[[1], [2], [3], [4]],
[[5], [6], [7], [8]],
[[9], [10], [11], [12]],
[[13], [14], [15], [16]]]]
(4) आकृति के निम्नलिखित इनपुट के लिए [8, 1, 3, 1]
, block_shape = [2, 2]
, और crops = [[0, 0], [2, 0]]
:
x = [[[[0], [1], [3]]], [[[0], [9], [11]]],
[[[0], [2], [4]]], [[[0], [10], [12]]],
[[[0], [5], [7]]], [[[0], [13], [15]]],
[[[0], [6], [8]]], [[[0], [14], [16]]]]
आउटपुट टेंसर का आकार [2, 2, 4, 1]
और मान है:
x = [[[[1], [2], [3], [4]],
[[5], [6], [7], [8]]],
[[[9], [10], [11], [12]],
[[13], [14], [15], [16]]]]
रिटर्न:
सार्वजनिक गुण
सार्वजनिक समारोह
नोड
::tensorflow::Node * node() const
operator::tensorflow::Input() const
ऑपरेटर::टेन्सरफ़्लो::आउटपुट
operator::tensorflow::Output() const
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::BatchToSpaceND Class Reference\n\ntensorflow::ops::BatchToSpaceND\n===============================\n\n`#include \u003carray_ops.h\u003e`\n\n[BatchToSpace](/versions/r1.15/api_docs/cc/class/tensorflow/ops/batch-to-space#classtensorflow_1_1ops_1_1_batch_to_space) for N-D tensors of type T.\n\nSummary\n-------\n\nThis operation reshapes the \"batch\" dimension 0 into `M + 1` dimensions of shape `block_shape + [batch]`, interleaves these blocks back into the grid defined by the spatial dimensions `[1, ..., M]`, to obtain a result with the same rank as the input. The spatial dimensions of this intermediate result are then optionally cropped according to `crops` to produce the output. This is the reverse of SpaceToBatch. See below for a precise description.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: N-D with shape `input_shape = [batch] + spatial_shape + remaining_shape`, where spatial_shape has M dimensions.\n- block_shape: 1-D with shape `[M]`, all values must be \\\u003e= 1.\n- crops: 2-D with shape `[M, 2]`, all values must be \\\u003e= 0. `crops[i] = [crop_start, crop_end]` specifies the amount to crop from input dimension `i + 1`, which corresponds to spatial dimension `i`. It is required that `crop_start[i] + crop_end[i] \u003c= block_shape[i] * input_shape[i + 1]`.\n\n\u003cbr /\u003e\n\nThis operation is equivalent to the following steps:\n\n\n1. Reshape `input` to `reshaped` of shape: \\[block_shape\\[0\\], ..., block_shape\\[M-1\\], batch / prod(block_shape), input_shape\\[1\\], ..., input_shape\\[N-1\\]\\]\n2. Permute dimensions of `reshaped` to produce `permuted` of shape \\[batch / prod(block_shape),input_shape\\[1\\], block_shape\\[0\\], ..., input_shape\\[M\\], block_shape\\[M-1\\],input_shape\\[M+1\\], ..., input_shape\\[N-1\\]\\]\n3. Reshape `permuted` to produce `reshaped_permuted` of shape \\[batch / prod(block_shape),input_shape\\[1\\] \\* block_shape\\[0\\], ..., input_shape\\[M\\] \\* block_shape\\[M-1\\],input_shape\\[M+1\\], ..., input_shape\\[N-1\\]\\]\n4. Crop the start and end of dimensions `[1, ..., M]` of `reshaped_permuted` according to `crops` to produce the output of shape: \\[batch / prod(block_shape),input_shape\\[1\\] \\* block_shape\\[0\\] - crops\\[0,0\\] - crops\\[0,1\\], ..., input_shape\\[M\\] \\* block_shape\\[M-1\\] - crops\\[M-1,0\\] - crops\\[M-1,1\\],input_shape\\[M+1\\], ..., input_shape\\[N-1\\]\\]\n\n\u003cbr /\u003e\n\nSome examples:\n\n(1) For the following input of shape `[4, 1, 1, 1]`, `block_shape = [2, 2]`, and `crops = [[0, 0], [0, 0]]`:\n\n\n```text\n[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]\n```\n\n\u003cbr /\u003e\n\nThe output tensor has shape `[1, 2, 2, 1]` and value:\n\n\n```text\nx = [[[[1], [2]], [[3], [4]]]]\n```\n\n\u003cbr /\u003e\n\n(2) For the following input of shape `[4, 1, 1, 3]`, `block_shape = [2, 2]`, and `crops = [[0, 0], [0, 0]]`:\n\n\n```text\n[[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]]\n```\n\n\u003cbr /\u003e\n\nThe output tensor has shape `[1, 2, 2, 3]` and value:\n\n\n```text\nx = [[[[1, 2, 3], [4, 5, 6]],\n [[7, 8, 9], [10, 11, 12]]]]\n```\n\n\u003cbr /\u003e\n\n(3) For the following input of shape `[4, 2, 2, 1]`, `block_shape = [2, 2]`, and `crops = [[0, 0], [0, 0]]`:\n\n\n```text\nx = [[[[1], [3]], [[9], [11]]],\n [[[2], [4]], [[10], [12]]],\n [[[5], [7]], [[13], [15]]],\n [[[6], [8]], [[14], [16]]]]\n```\n\n\u003cbr /\u003e\n\nThe output tensor has shape `[1, 4, 4, 1]` and value:\n\n\n```text\nx = [[[[1], [2], [3], [4]],\n [[5], [6], [7], [8]],\n [[9], [10], [11], [12]],\n [[13], [14], [15], [16]]]]\n```\n\n\u003cbr /\u003e\n\n(4) For the following input of shape `[8, 1, 3, 1]`, `block_shape = [2, 2]`, and `crops = [[0, 0], [2, 0]]`:\n\n\n```text\nx = [[[[0], [1], [3]]], [[[0], [9], [11]]],\n [[[0], [2], [4]]], [[[0], [10], [12]]],\n [[[0], [5], [7]]], [[[0], [13], [15]]],\n [[[0], [6], [8]]], [[[0], [14], [16]]]]\n```\n\n\u003cbr /\u003e\n\nThe output tensor has shape `[2, 2, 4, 1]` and value:\n\n\n```text\nx = [[[[1], [2], [3], [4]],\n [[5], [6], [7], [8]]],\n [[[9], [10], [11], [12]],\n [[13], [14], [15], [16]]]]\n```\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [BatchToSpaceND](#classtensorflow_1_1ops_1_1_batch_to_space_n_d_1ae9fc7cf839b67ec1692eb9dbd13dab3f)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` block_shape, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` crops)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_batch_to_space_n_d_1a1e8d19aed27a8ba75041200ee25a7310) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_batch_to_space_n_d_1a2f9a5258c2d37ba9ce71c6ebfe2f754d) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_batch_to_space_n_d_1a8c320b154abac62302b289161e5aa745)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_batch_to_space_n_d_1a94adde19cfddf4d1109cceff401543c8)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_batch_to_space_n_d_1a17e07f190557e6565111355cc159b528)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### BatchToSpaceND\n\n```gdscript\n BatchToSpaceND(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input block_shape,\n ::tensorflow::Input crops\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]