संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: मैट्रिक्सडिआगपार्ट
#include <array_ops.h>
बैच किए गए टेंसर का बैच विकर्ण भाग लौटाता है।
सारांश
यह ऑपरेशन बैच किए गए input
के diagonal
भाग के साथ एक टेंसर लौटाता है। diagonal
भाग की गणना इस प्रकार की जाती है:
मान लें कि input
में k
आयाम हैं [I, J, K, ..., M, N]
, तो आउटपुट आयामों के साथ k - 1
रैंक का एक टेंसर है [I, J, K, ..., min(M, N)]
कहाँ:
diagonal[i, j, k, ..., n] = input[i, j, k, ..., n, n]
इनपुट कम से कम एक मैट्रिक्स होना चाहिए.
उदाहरण के लिए:
# 'input' is [[[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]],
[[5, 0, 0, 0]
[0, 6, 0, 0]
[0, 0, 7, 0]
[0, 0, 0, 8]]]
and input.shape = (2, 4, 4)
tf.matrix_diag_part(input) ==> [[1, 2, 3, 4], [5, 6, 7, 8]]
which has shape (2, 4)
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- इनपुट: रैंक
k
टेंसर जहां k >= 2
।
रिटर्न:
-
Output
: निकाले गए विकर्णों का आकार diagonal.shape = input.shape[:-2] + [min(input.shape[-2:])]
।
सार्वजनिक गुण
सार्वजनिक समारोह
नोड
::tensorflow::Node * node() const
operator::tensorflow::Input() const
ऑपरेटर::टेन्सरफ़्लो::आउटपुट
operator::tensorflow::Output() const
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::MatrixDiagPart Class Reference\n\ntensorflow::ops::MatrixDiagPart\n===============================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns the batched diagonal part of a batched tensor.\n\nSummary\n-------\n\nThis operation returns a tensor with the `diagonal` part of the batched `input`. The `diagonal` part is computed as follows:\n\nAssume `input` has `k` dimensions `[I, J, K, ..., M, N]`, then the output is a tensor of rank `k - 1` with dimensions `[I, J, K, ..., min(M, N)]` where:\n\n`diagonal[i, j, k, ..., n] = input[i, j, k, ..., n, n]`.\n\nThe input must be at least a matrix.\n\nFor example:\n\n\n```text\n# 'input' is [[[1, 0, 0, 0]\n [0, 2, 0, 0]\n [0, 0, 3, 0]\n [0, 0, 0, 4]],\n [[5, 0, 0, 0]\n [0, 6, 0, 0]\n [0, 0, 7, 0]\n [0, 0, 0, 8]]]\n```\n\n\u003cbr /\u003e\n\n\n```text\nand input.shape = (2, 4, 4)\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\ntf.matrix_diag_part(input) ==\u003e [[1, 2, 3, 4], [5, 6, 7, 8]]\n```\n\n\u003cbr /\u003e\n\n\n```perl6\nwhich has shape (2, 4)\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Rank `k` tensor where `k \u003e= 2`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The extracted diagonal(s) having shape `diagonal.shape = input.shape[:-2] + [min(input.shape[-2:])]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixDiagPart](#classtensorflow_1_1ops_1_1_matrix_diag_part_1a2ff08591126639a356e8ddb7b1bbe901)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [diagonal](#classtensorflow_1_1ops_1_1_matrix_diag_part_1aefc6c0270b1e5a8ecca5253aa3197301) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_matrix_diag_part_1a2ee7a3d61dc294c15227bb4a4fd796fb) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_diag_part_1a6310cbc4148604ca613410d6d3f6794e)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_diag_part_1ab168eaa21921f9a0ff6ca197fbbbd8da)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_diag_part_1a6ac92f6b3dfd62c3ef3c08777c62d543)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### diagonal\n\n```text\n::tensorflow::Output diagonal\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### MatrixDiagPart\n\n```gdscript\n MatrixDiagPart(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]