संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: मैट्रिक्सडायग
#include <array_ops.h>
किसी दिए गए बैच विकर्ण मान के साथ एक बैच विकर्ण टेंसर लौटाता है।
सारांश
एक diagonal
देखते हुए, यह ऑपरेशन diagonal
के साथ एक टेंसर लौटाता है और बाकी सब कुछ शून्य के साथ गद्देदार होता है। विकर्ण की गणना इस प्रकार की जाती है:
मान लें कि diagonal
में k
आयाम हैं [I, J, K, ..., N]
, तो आउटपुट आयामों के साथ रैंक k+1
का एक टेंसर है [I, J, K, ..., N, N]` जहां:
output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]
उदाहरण के लिए:
# 'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]]
and diagonal.shape = (2, 4)
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]],
[[5, 0, 0, 0]
[0, 6, 0, 0]
[0, 0, 7, 0]
[0, 0, 0, 8]]]
which has shape (2, 4, 4)
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- विकर्ण: रैंक
k
, जहां k >= 1
।
रिटर्न:
-
Output
: रैंक k+1
, output.shape = diagonal.shape + [diagonal.shape[-1]]
के साथ।
सार्वजनिक गुण
सार्वजनिक समारोह
नोड
::tensorflow::Node * node() const
operator::tensorflow::Input() const
ऑपरेटर::टेन्सरफ़्लो::आउटपुट
operator::tensorflow::Output() const
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::MatrixDiag Class Reference\n\ntensorflow::ops::MatrixDiag\n===========================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a batched diagonal tensor with a given batched diagonal values.\n\nSummary\n-------\n\nGiven a `diagonal`, this operation returns a tensor with the `diagonal` and everything else padded with zeros. The diagonal is computed as follows:\n\nAssume `diagonal` has `k` dimensions `[I, J, K, ..., N]`, then the output is a tensor of rank `k+1` with dimensions \\[I, J, K, ..., N, N\\]\\` where:\n\n`output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]`.\n\nFor example:\n\n\n```text\n# 'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]]\n```\n\n\u003cbr /\u003e\n\n\n```text\nand diagonal.shape = (2, 4)\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\ntf.matrix_diag(diagonal) ==\u003e [[[1, 0, 0, 0]\n [0, 2, 0, 0]\n [0, 0, 3, 0]\n [0, 0, 0, 4]],\n [[5, 0, 0, 0]\n [0, 6, 0, 0]\n [0, 0, 7, 0]\n [0, 0, 0, 8]]]\n```\n\n\u003cbr /\u003e\n\n\n```perl6\nwhich has shape (2, 4, 4)\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- diagonal: Rank `k`, where `k \u003e= 1`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Rank `k+1`, with `output.shape = diagonal.shape + [diagonal.shape[-1]]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixDiag](#classtensorflow_1_1ops_1_1_matrix_diag_1a2b263945a55c830cec2aa8e732ad4c37)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` diagonal)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_matrix_diag_1a2a3f9fd08f8b6b8b5209a62bc2c0e4e4) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_matrix_diag_1aba2480ed932f279c48fc6028f6be7a92) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_diag_1aa1db7faefb57b9fee4eddaee99c3a5a3)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_diag_1ae38fc37ca0a5a229e9c9d3f827ebfa6d)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_diag_1aaaad00f636d2ad7be0fd131133b79006)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### MatrixDiag\n\n```gdscript\n MatrixDiag(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input diagonal\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]