संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: पाउ
#include <math_ops.h>
एक मान की शक्ति की गणना दूसरे मान से करता है।
सारांश
एक टेंसर x
और एक टेंसर y
दिया गया है, यह ऑपरेशन गणना करता है \(x^y\) x
और y
में संगत तत्वों के लिए। उदाहरण के लिए:
# tensor 'x' is [[2, 2]], [3, 3]]
# tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
तर्क:
रिटर्न:
सार्वजनिक गुण
सार्वजनिक समारोह
नोड
::tensorflow::Node * node() const
operator::tensorflow::Input() const
ऑपरेटर::टेन्सरफ़्लो::आउटपुट
operator::tensorflow::Output() const
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-25 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-25 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::Pow Class Reference\n\ntensorflow::ops::Pow\n====================\n\n`#include \u003cmath_ops.h\u003e`\n\nComputes the power of one value to another.\n\nSummary\n-------\n\nGiven a tensor `x` and a tensor `y`, this operation computes \\\\(x\\^y\\\\) for corresponding elements in `x` and `y`. For example:\n\n\n```text\n# tensor 'x' is [[2, 2]], [3, 3]]\n# tensor 'y' is [[8, 16], [2, 3]]\ntf.pow(x, y) ==\u003e [[256, 65536], [9, 27]]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The z tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Pow](#classtensorflow_1_1ops_1_1_pow_1aca0c4d8d950913503421c22ff3141a2c)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` y)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_pow_1a7cf450a69c0c08d103b161e9363f7e7a) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [z](#classtensorflow_1_1ops_1_1_pow_1aa4df670ff306b3b060f6214659131a3e) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_pow_1aebdbfbf181ed695203bc0f67e0e98daa)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_pow_1aad45efe34ec9d129f73b5df4715efdce)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_pow_1ab3d1c9b6cda9074b95ded97ba401948d)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### z\n\n```text\n::tensorflow::Output z\n``` \n\nPublic functions\n----------------\n\n### Pow\n\n```gdscript\n Pow(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x,\n ::tensorflow::Input y\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]