Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
przepływ tensorowy:: ops:: LosoweGamma
#include <random_ops.h>
Wyprowadza losowe wartości z rozkładu(ów) Gamma opisanego przez alfa.
Streszczenie
Ta operacja wykorzystuje algorytm Marsaglii i in. do pozyskiwania próbek poprzez transformację-odrzucenie z par jednolitych i normalnych zmiennych losowych. Zobacz http://dl.acm.org/citation.cfm?id=358414
Argumenty:
- zakres: Obiekt Scope
- kształt: tensor liczb całkowitych 1-D. Kształt niezależnych próbek do wyciągnięcia z każdego rozkładu opisanego parametrami kształtu podanymi w alfa.
- alfa: tensor, w którym każdy skalar jest parametrem „kształtu” opisującym powiązany rozkład gamma.
Opcjonalne atrybuty (patrz Attrs
):
- ziarno: Jeśli
seed
lub seed2
jest ustawione na wartość różną od zera, generator liczb losowych jest zaszczepiany przez dane ziarno. W przeciwnym razie jest on zaszczepiany losowo. - nasiono2: Drugie ziarno, aby uniknąć kolizji nasion.
Zwroty:
-
Output
: tensor o kształcie shape + shape(alpha)
. Każdy plasterek [:, ..., :, i0, i1, ...iN]
zawiera próbki pobrane dla alpha[i0, i1, ...iN]
. Typ d wyjścia jest zgodny z typem alfa.
Publiczne funkcje statyczne |
---|
Seed (int64 x) | |
Seed2 (int64 x) | |
Atrybuty publiczne
Funkcje publiczne
węzeł
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Wyjście
operator::tensorflow::Output() const
Publiczne funkcje statyczne
Nasienie
Attrs Seed(
int64 x
)
Nasiona2
Attrs Seed2(
int64 x
)
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-26 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::RandomGamma Class Reference\n\ntensorflow::ops::RandomGamma\n============================\n\n`#include \u003crandom_ops.h\u003e`\n\nOutputs random values from the Gamma distribution(s) described by alpha.\n\nSummary\n-------\n\nThis op uses the algorithm by Marsaglia et al. to acquire samples via transformation-rejection from pairs of uniform and normal random variables. See \u003chttp://dl.acm.org/citation.cfm?id=358414\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- shape: 1-D integer tensor. Shape of independent samples to draw from each distribution described by the shape parameters given in alpha.\n- alpha: A tensor in which each scalar is a \"shape\" parameter describing the associated gamma distribution.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs#structtensorflow_1_1ops_1_1_random_gamma_1_1_attrs)):\n\n- seed: If either `seed` or `seed2` are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed.\n- seed2: A second seed to avoid seed collision.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A tensor with shape `shape + shape(alpha)`. Each slice `[:, ..., :, i0, i1, ...iN]` contains the samples drawn for `alpha[i0, i1, ...iN]`. The dtype of the output matches the dtype of alpha.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [RandomGamma](#classtensorflow_1_1ops_1_1_random_gamma_1a54b3819de158eaa8e1f4dd2e09c38350)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` alpha)` ||\n| [RandomGamma](#classtensorflow_1_1ops_1_1_random_gamma_1afb5a4dcc9f3b7849c9ccf8e49233c658)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` alpha, const `[RandomGamma::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs#structtensorflow_1_1ops_1_1_random_gamma_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_random_gamma_1a3442325c98888cd41398f85c8dc7215d) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_random_gamma_1ae108904c41339fe8cced748589ef2622) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_random_gamma_1a0a8429580ed9eda5d1b850c9fc9cd7c6)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_random_gamma_1ad5e60091b7438c54f6d2457fccba06ed)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_random_gamma_1a20b55a813e49ae84f48cd79c87285409)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|\n| [Seed](#classtensorflow_1_1ops_1_1_random_gamma_1a62800c601cb18e766b0f41f18f86f335)`(int64 x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs#structtensorflow_1_1ops_1_1_random_gamma_1_1_attrs) |\n| [Seed2](#classtensorflow_1_1ops_1_1_random_gamma_1a42984b9ff3911c8867903be5bcd97ac7)`(int64 x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs#structtensorflow_1_1ops_1_1_random_gamma_1_1_attrs) |\n\n| ### Structs ||\n|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::RandomGamma::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs) | Optional attribute setters for [RandomGamma](/versions/r1.15/api_docs/cc/class/tensorflow/ops/random-gamma#classtensorflow_1_1ops_1_1_random_gamma). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### RandomGamma\n\n```gdscript\n RandomGamma(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input shape,\n ::tensorflow::Input alpha\n)\n``` \n\n### RandomGamma\n\n```gdscript\n RandomGamma(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input shape,\n ::tensorflow::Input alpha,\n const RandomGamma::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### Seed\n\n```text\nAttrs Seed(\n int64 x\n)\n``` \n\n### Seed2\n\n```text\nAttrs Seed2(\n int64 x\n)\n```"]]