संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: सॉफ्टमैक्सक्रॉसएंट्रॉपीविथलॉगिट्स
#include <nn_ops.h>
बैकप्रोपेगेट के लिए सॉफ्टमैक्स क्रॉस एन्ट्रॉपी लागत और ग्रेडिएंट की गणना करता है।
सारांश
इनपुट लॉग हैं, संभावनाएं नहीं।
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- विशेषताएं: बैच_आकार x संख्या_वर्ग मैट्रिक्स
- लेबल: बैच_आकार x संख्या_वर्ग मैट्रिक्स कॉल करने वाले को यह सुनिश्चित करना होगा कि लेबल का प्रत्येक बैच एक वैध संभाव्यता वितरण का प्रतिनिधित्व करता है।
रिटर्न:
-
Output
हानि: उदाहरण के अनुसार हानि (बैच_आकार वेक्टर)। -
Output
बैकप्रॉप: बैकप्रॉपैगेटेड ग्रेडिएंट्स (बैच_साइज़ x num_classes मैट्रिक्स)।
सार्वजनिक गुण
सार्वजनिक समारोह
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-25 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-25 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::SoftmaxCrossEntropyWithLogits Class Reference\n\ntensorflow::ops::SoftmaxCrossEntropyWithLogits\n==============================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes softmax cross entropy cost and gradients to backpropagate.\n\nSummary\n-------\n\nInputs are the logits, not probabilities.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- features: batch_size x num_classes matrix\n- labels: batch_size x num_classes matrix The caller must ensure that each batch of labels represents a valid probability distribution.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) loss: Per example loss (batch_size vector).\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) backprop: backpropagated gradients (batch_size x num_classes matrix).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SoftmaxCrossEntropyWithLogits](#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits_1a4cbff4fa9d4606e374b1a88b5de132dc)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` features, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` labels)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [backprop](#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits_1a3f3e88d3a28b38d7190c586e53a90391) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [loss](#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits_1ad3f6fea2fc731063932763fa4b3c8ce0) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits_1aec7fdf4d82369e8bc00d0c9c8dd7faab) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\nPublic attributes\n-----------------\n\n### backprop\n\n```text\n::tensorflow::Output backprop\n``` \n\n### loss\n\n```text\n::tensorflow::Output loss\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### SoftmaxCrossEntropyWithLogits\n\n```gdscript\n SoftmaxCrossEntropyWithLogits(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input features,\n ::tensorflow::Input labels\n)\n```"]]