संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: टेंसरअरेस्प्लिट
#include <data_flow_ops.h>
इनपुट मान से डेटा को TensorArray तत्वों में विभाजित करें।
सारांश
यह मानते हुए कि lengths
मान लेती है
(n0, n1, ..., n(T-1))
and that `value` has shape
(n0 + n1 + ... + n(T-1) x d0 x d1 x ...)```,
this splits values into a TensorArray with T tensors.
TensorArray index t will be the subtensor of values with starting position
```(n0 + n1 + ... + n(t-1), 0, 0, ...)
and having size
nt x d0 x d1 x ...```
Arguments:
- scope: A Scope object
- handle: The handle to a TensorArray.
- value: The concatenated tensor to write to the TensorArray.
- lengths: The vector of lengths, how to split the rows of value into the TensorArray.
- flow_in: A float scalar that enforces proper chaining of operations.
Returns:
Output
: A float scalar that enforces proper chaining of operations.
Public attributes
सार्वजनिक समारोह
नोड
::tensorflow::Node * node() const
operator::tensorflow::Input() const
ऑपरेटर::टेन्सरफ़्लो::आउटपुट
operator::tensorflow::Output() const
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-25 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-25 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::TensorArraySplit Class Reference\n\ntensorflow::ops::TensorArraySplit\n=================================\n\n`#include \u003cdata_flow_ops.h\u003e`\n\nSplit the data from the input value into [TensorArray](/versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array) elements.\n\nSummary\n-------\n\nAssuming that `lengths` takes on values\n\n(n0, n1, ..., n(T-1)) \n\n``````mysql\n\n \n and that `value` has shape\n \n \n`````text\n(n0 + n1 + ... + n(T-1) x d0 x d1 x ...)```,\n this splits values into a /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array with T tensors.\n /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array index t will be the subtensor of values with starting position\n ```(n0 + n1 + ... + n(t-1), 0, 0, ...)\u003cbr /\u003e\n\n\n\n \n\n \n\n```\nand having size\n```\n\n \n\u003cbr /\u003e\n\n\n\n \n\u003cbr /\u003e\n\n\n\n\n````gdscript\nnt x d0 x d1 x ...```\n Arguments:\n \n- scope: A /versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope object\n\n \n- handle: The handle to a /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array.\n\n \n- value: The concatenated tensor to write to the /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array.\n\n \n- lengths: The vector of lengths, how to split the rows of value into the /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array.\n\n \n- flow_in: A float scalar that enforces proper chaining of operations.\n\n \n\n Returns:\n \n- /versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output: A float scalar that enforces proper chaining of operations. \n\n \n\n \n\n\n \n### Constructors and Destructors\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ae33a80f5f64f1d0ce47cb9ba380ee6bb(const ::/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope & scope, ::/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input handle, ::/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input value, ::/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input lengths, ::/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input flow_in)\n \n\n \n\n\n \n\n\n \n### Public attributes\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1a6a6beee076f43e4045b8327c9a8f0be9\n \n\n \n\n ::/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output\n \n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1a1cf9133d6b7032ba48abeff356547a58\n \n\n \n\n /versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation\n \n\n \n\n\n \n\n\n \n### Public functions\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ad03cc93202545e0234d90faee0425ed9() const \n \n\n \n\n ::tensorflow::Node *\n \n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ac2029be4ba96df5da32f6bd0fc3fb8b1() const \n \n\n \n\n `\n` \n`\n` \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ab90a5c257e9a8df6209a663ade45e3fc() const \n \n\n \n\n `\n` \n`\n` \n\n\n Public attributes\n \n \n### flow_out\n\n\n \n```\n::tensorflow::Output flow_out\n```\n\n \n\n \n \n \n### operation\n\n\n \n\n\n```text\nOperation operation\n```\n\n \n\n \n Public functions\n \n \n### TensorArraySplit\n\n\n \n\n\n```gdscript\n TensorArraySplit(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input handle,\n ::tensorflow::Input value,\n ::tensorflow::Input lengths,\n ::tensorflow::Input flow_in\n)\n```\n\n \n\n \n \n \n### node\n\n\n \n\n\n```gdscript\n::tensorflow::Node * node() const \n```\n\n \n\n \n \n \n### operator::tensorflow::Input\n\n\n \n\n\n```gdscript\n operator::tensorflow::Input() const \n```\n\n \n\n \n \n \n### operator::tensorflow::Output\n\n\n \n\n\n```gdscript\n operator::tensorflow::Output() const \n```\n\n \n\n \n\n \n\n \n````\n`````\n``````"]]