Google I/O में ट्यूनिंग के लिए धन्यवाद। मांग पर सभी सत्र देखें मांग पर देखें

टेंसरफ़्लो :: ऑप्स :: TensorArraySplit

#include <data_flow_ops.h>

TensorArray तत्वों में इनपुट मान से डेटा विभाजित करें।

सारांश

मान लें कि lengths मानों पर ले जाता है

(n0, n1, ..., n (T-1))

and that `value` has shape

(n0 + n1 + ... + n(T-1) x d0 x d1 x ...)```,

this splits values into a TensorArray with T tensors.

TensorArray index t will be the subtensor of values with starting position

```(n0 + n1 + ... + n(t-1), 0, 0, ...)

and having size

nt x d0 x d1 x ...```

Arguments:

  • scope: A Scope object
  • handle: The handle to a TensorArray.
  • value: The concatenated tensor to write to the TensorArray.
  • lengths: The vector of lengths, how to split the rows of value into the TensorArray.
  • flow_in: A float scalar that enforces proper chaining of operations.

Returns:

  • Output: A float scalar that enforces proper chaining of operations.

Constructors and Destructors

TensorArraySplit(const ::tensorflow::Scope & scope, ::tensorflow::Input handle, ::tensorflow::Input value, ::tensorflow::Input lengths, ::tensorflow::Input flow_in)

Public attributes

flow_out
operation

Public functions

node() const
::tensorflow::Node *
operator::tensorflow::Input() const
operator::tensorflow::Output() const

Public attributes

flow_out

::tensorflow::Output flow_out

ऑपरेशन

Operation operation

सार्वजनिक कार्य

TensorArraySplit

 TensorArraySplit(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input handle,
  ::tensorflow::Input value,
  ::tensorflow::Input lengths,
  ::tensorflow::Input flow_in
)

नोड

::tensorflow::Node * node() const 

ऑपरेटर :: टेंसरफ़्लो :: इनपुट

 operator::tensorflow::Input() const 
है

ऑपरेटर :: टेंसरफ़्लो :: आउटपुट

 operator::tensorflow::Output() const