Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: Dequantizzare
#include <array_ops.h>
Dequantizza il tensore 'input' in un tensore float.
Riepilogo
[min_range, max_range] sono float scalari che specificano l'intervallo per i dati di "input". L'attributo 'mode' controlla esattamente quali calcoli vengono utilizzati per convertire i valori float nei loro equivalenti quantizzati.
Nella modalità 'MIN_COMBINED', ciascun valore del tensore subirà quanto segue:
if T == qint8: in[i] += (range(T) + 1)/ 2.0
out[i] = min_range + (in[i]* (max_range - min_range) / range(T))
qui
range(T) = numeric_limits ::max() - numeric_limits ::min()
range(T) = numeric_limits ::max() - numeric_limits ::min()
range(T) = numeric_limits ::max() - numeric_limits ::min()
Esempio di modalità MIN_COMBINED
Se l'input proviene da un QuantizedRelu6 , il tipo di output è quint8 (intervallo 0-255) ma il possibile intervallo di QuantizedRelu6 è 0-6. I valori min_range e max_range sono quindi 0,0 e 6,0. Dequantizza su quint8 prenderà ogni valore, lo convertirà in float e lo moltiplicherà per 6/255. Tieni presente che se quantizedtype è qint8, l'operazione aggiungerà inoltre ciascun valore per 128 prima dell'esecuzione del cast.
Se la modalità è "MIN_FIRST", viene utilizzato questo approccio:
num_discrete_values = 1 << (# of bits in T)
range_adjust = num_discrete_values / (num_discrete_values - 1)
range = (range_max - range_min) * range_adjust
range_scale = range / num_discrete_values
const double offset_input = static_cast(input) - lowest_quantized;
result = range_min + ((input - numeric_limits::min()) * range_scale)
Esempio della modalità SCALA
La modalità SCALED
corrisponde all'approccio di quantizzazione utilizzato in QuantizeAndDequantize{V2|V3}
.
Se la modalità è SCALED
, non utilizziamo l'intero intervallo del tipo di output, scegliendo di elidere il valore più basso possibile per la simmetria (ad esempio, l'intervallo di output è compreso tra -127 e 127, non tra -128 e 127 per la quantizzazione a 8 bit con segno), in modo che 0.0 corrisponda a 0.
Per prima cosa troviamo l'intervallo di valori nel nostro tensore. L'intervallo che usiamo è sempre centrato su 0, quindi troviamo m tale che
m = max(abs(input_min), abs(input_max))
Il nostro intervallo del tensore di input è quindi [-m, m]
.
Successivamente, scegliamo i nostri bucket di quantizzazione a virgola fissa, [min_fixed, max_fixed]
. Se T è firmato, questo lo è
num_bits = sizeof(T) * 8
[min_fixed, max_fixed] =
[-(1 << (num_bits - 1) - 1), (1 << (num_bits - 1)) - 1]
Altrimenti, se T non ha segno, lo è l'intervallo in virgola fissa
[min_fixed, max_fixed] = [0, (1 << num_bits) - 1]
Da questo calcoliamo il nostro fattore di scala, s:
s = (2 * m) / (max_fixed - min_fixed)
Ora possiamo dequantizzare gli elementi del nostro tensore:
result = input * s
Argomenti:
- scope: un oggetto Scope
- min_range: il valore scalare minimo eventualmente prodotto per l'input.
- max_range: il valore scalare massimo possibilmente prodotto per l'input.
Resi:
-
Output
: il tensore di uscita.
Funzioni pubbliche statiche |
---|
Mode (StringPiece x) | |
Attributi pubblici
Funzioni pubbliche
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatore::tensorflow::Output
operator::tensorflow::Output() const
Funzioni pubbliche statiche
Modalità
Attrs Mode(
StringPiece x
)
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-25 UTC.
[null,null,["Ultimo aggiornamento 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::Dequantize Class Reference\n\ntensorflow::ops::Dequantize\n===========================\n\n`#include \u003carray_ops.h\u003e`\n\n[Dequantize](/versions/r2.0/api_docs/cc/class/tensorflow/ops/dequantize#classtensorflow_1_1ops_1_1_dequantize) the 'input' tensor into a float [Tensor](/versions/r2.0/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n\nSummary\n-------\n\n\\[min_range, max_range\\] are scalar floats that specify the range for the 'input' data. The 'mode' attribute controls exactly which calculations are used to convert the float values to their quantized equivalents.\n\nIn 'MIN_COMBINED' mode, each value of the tensor will undergo the following:\n\n\u003cbr /\u003e\n\n```transact-sql\nif T == qint8: in[i] += (range(T) + 1)/ 2.0\nout[i] = min_range + (in[i]* (max_range - min_range) / range(T))\n```\nhere `range(T) = numeric_limits`::max() - numeric_limits::min()\n\n\u003cbr /\u003e\n\n\n*MIN_COMBINED Mode Example*\n\nIf the input comes from a [QuantizedRelu6](/versions/r2.0/api_docs/cc/class/tensorflow/ops/quantized-relu6#classtensorflow_1_1ops_1_1_quantized_relu6), the output type is quint8 (range of 0-255) but the possible range of [QuantizedRelu6](/versions/r2.0/api_docs/cc/class/tensorflow/ops/quantized-relu6#classtensorflow_1_1ops_1_1_quantized_relu6) is 0-6. The min_range and max_range values are therefore 0.0 and 6.0. [Dequantize](/versions/r2.0/api_docs/cc/class/tensorflow/ops/dequantize#classtensorflow_1_1ops_1_1_dequantize) on quint8 will take each value, cast to float, and multiply by 6 / 255. Note that if quantizedtype is qint8, the operation will additionally add each value by 128 prior to casting.\n\nIf the mode is 'MIN_FIRST', then this approach is used:\n\n\n```gdscript\nnum_discrete_values = 1 \u003c\u003c (# of bits in T)\nrange_adjust = num_discrete_values / (num_discrete_values - 1)\nrange = (range_max - range_min) * range_adjust\nrange_scale = range / num_discrete_values\nconst double offset_input = static_cast(input) - lowest_quantized;\nresult = range_min + ((input - numeric_limits::min()) * range_scale)\n```\n\n\u003cbr /\u003e\n\n\n*SCALED mode Example*\n\n`SCALED` mode matches the quantization approach used in `QuantizeAndDequantize{V2|V3}`.\n\nIf the mode is `SCALED`, we do not use the full range of the output type, choosing to elide the lowest possible value for symmetry (e.g., output range is -127 to 127, not -128 to 127 for signed 8 bit quantization), so that 0.0 maps to 0.\n\nWe first find the range of values in our tensor. The range we use is always centered on 0, so we find m such that \n\n```scdoc\n m = max(abs(input_min), abs(input_max))\n```\n\n\u003cbr /\u003e\n\nOur input tensor range is then `[-m, m]`.\n\nNext, we choose our fixed-point quantization buckets, `[min_fixed, max_fixed]`. If T is signed, this is \n\n```scdoc\n num_bits = sizeof(T) * 8\n [min_fixed, max_fixed] =\n [-(1 \u003c\u003c (num_bits - 1) - 1), (1 \u003c\u003c (num_bits - 1)) - 1]\n```\n\n\u003cbr /\u003e\n\nOtherwise, if T is unsigned, the fixed-point range is \n\n```scdoc\n [min_fixed, max_fixed] = [0, (1 \u003c\u003c num_bits) - 1]\n```\n\n\u003cbr /\u003e\n\nFrom this we compute our scaling factor, s: \n\n```scdoc\n s = (2 * m) / (max_fixed - min_fixed)\n```\n\n\u003cbr /\u003e\n\nNow we can dequantize the elements of our tensor: \n\n```scdoc\nresult = input * s\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- min_range: The minimum scalar value possibly produced for the input.\n- max_range: The maximum scalar value possibly produced for the input.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Dequantize](#classtensorflow_1_1ops_1_1_dequantize_1ace6411557abc00c6e59649720be7d579)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_range, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_range)` ||\n| [Dequantize](#classtensorflow_1_1ops_1_1_dequantize_1afb71f46f9e4fc4922578ecd9116ad9b1)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_range, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_range, const `[Dequantize::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/dequantize/attrs#structtensorflow_1_1ops_1_1_dequantize_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_dequantize_1a917ce29fbec6ef49406db9a374bde9aa) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_dequantize_1a5c4618ae3d058bcd8547217612f8f41e) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_dequantize_1a4bdeb613e4b88880638a67528cbd01f0)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_dequantize_1ab1b62ee39a382d6e124eb62156c05525)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_dequantize_1ae01ee2df9b62f7729848ca15ed70e8fc)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|\n| [Mode](#classtensorflow_1_1ops_1_1_dequantize_1ac9873b34c5c0eb36296e0fe726644fc9)`(StringPiece x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/dequantize/attrs#structtensorflow_1_1ops_1_1_dequantize_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::Dequantize::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/dequantize/attrs) | Optional attribute setters for [Dequantize](/versions/r2.0/api_docs/cc/class/tensorflow/ops/dequantize#classtensorflow_1_1ops_1_1_dequantize). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Dequantize\n\n```gdscript\n Dequantize(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input min_range,\n ::tensorflow::Input max_range\n)\n``` \n\n### Dequantize\n\n```gdscript\n Dequantize(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input min_range,\n ::tensorflow::Input max_range,\n const Dequantize::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### Mode\n\n```text\nAttrs Mode(\n StringPiece x\n)\n```"]]