Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: Pool medio frazionario
#include <nn_ops.h>
Esegue il pooling medio frazionario sull'input.
Riepilogo
Il raggruppamento medio frazionario è simile al raggruppamento massimo frazionario nella fase di generazione della regione di raggruppamento. L'unica differenza è che dopo la generazione delle regioni di pool, viene eseguita un'operazione di media invece di un'operazione max in ciascuna regione di pool.
Argomenti:
- scope: un oggetto Scope
- valore: 4-D con forma
[batch, height, width, channels]
. - pooling_ratio: rapporto di pooling per ogni dimensione di
value
, attualmente supporta solo la dimensione riga e colonna e dovrebbe essere >= 1,0. Ad esempio, un rapporto di pooling valido è [1.0, 1.44, 1.73, 1.0]. Il primo e l'ultimo elemento devono essere 1.0 perché non consentiamo il raggruppamento su dimensioni batch e canali. 1,44 e 1,73 sono rapporti di pooling rispettivamente sulle dimensioni di altezza e larghezza.
Attributi facoltativi (vedi Attrs
):
- pseudo_random: se impostato su True, genera la sequenza di pooling in modo pseudocasuale, altrimenti in modo casuale. Controllare l'articolo Benjamin Graham, Fractional Max-Pooling per la differenza tra pseudocasuale e casuale.
- sovrapposizione: se impostato su True, significa che durante il raggruppamento, i valori al confine delle celle di raggruppamento adiacenti vengono utilizzati da entrambe le celle. Per esempio:
index 0 1 2 3 4
value 20 5 16 3 7
Se la sequenza di pool è [0, 2, 4], allora 16, nell'indice 2 verrà utilizzato due volte. Il risultato sarebbe [41/3, 26/3] per il pooling medio frazionario.
- deterministico: se impostato su True, verrà utilizzata una regione di pooling fissa durante l'iterazione su un nodo FractionalAvgPool nel grafico di calcolo. Utilizzato principalmente nel test unitario per rendere deterministico FractionalAvgPool .
- seme: se seme o seme2 sono impostati su un valore diverso da zero, il generatore di numeri casuali viene seminato dal seme specificato. Altrimenti, viene seminato da un seme casuale.
- seed2: un secondo seme per evitare la collisione del seme.
Resi:
- Output
Output
: tensore di output dopo il pooling medio frazionario. -
Output
row_pooling_sequence: sequenza di pooling delle righe, necessaria per calcolare il gradiente. -
Output
col_pooling_sequence: sequenza di pooling delle colonne, necessaria per calcolare il gradiente.
Attributi pubblici
Funzioni pubbliche
Funzioni pubbliche statiche
deterministico
Attrs Deterministic(
bool x
)
Sovrapposizione
Attrs Overlapping(
bool x
)
Pseudocasuale
Attrs PseudoRandom(
bool x
)
Seme
Attrs Seed(
int64 x
)
Seme2
Attrs Seed2(
int64 x
)
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::FractionalAvgPool Class Reference\n\ntensorflow::ops::FractionalAvgPool\n==================================\n\n`#include \u003cnn_ops.h\u003e`\n\nPerforms fractional average pooling on the input.\n\nSummary\n-------\n\nFractional average pooling is similar to Fractional max pooling in the pooling region generation step. The only difference is that after pooling regions are generated, a mean operation is performed instead of a max operation in each pooling region.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- value: 4-D with shape `[batch, height, width, channels]`.\n- pooling_ratio: Pooling ratio for each dimension of `value`, currently only supports row and col dimension and should be \\\u003e= 1.0. For example, a valid pooling ratio looks like \\[1.0, 1.44, 1.73, 1.0\\]. The first and last elements must be 1.0 because we don't allow pooling on batch and channels dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions respectively.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs)):\n\n- pseudo_random: When set to True, generates the pooling sequence in a pseudorandom fashion, otherwise, in a random fashion. Check paper [Benjamin Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) for difference between pseudorandom and random.\n- overlapping: When set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells. For example:\n\n\u003cbr /\u003e\n\n\n`index 0 1 2 3 4`\n\n\n`value 20 5 16 3 7`\n\nIf the pooling sequence is \\[0, 2, 4\\], then 16, at index 2 will be used twice. The result would be \\[41/3, 26/3\\] for fractional avg pooling.\n\n- deterministic: When set to True, a fixed pooling region will be used when iterating over a [FractionalAvgPool](/versions/r2.0/api_docs/cc/class/tensorflow/ops/fractional-avg-pool#classtensorflow_1_1ops_1_1_fractional_avg_pool) node in the computation graph. Mainly used in unit test to make [FractionalAvgPool](/versions/r2.0/api_docs/cc/class/tensorflow/ops/fractional-avg-pool#classtensorflow_1_1ops_1_1_fractional_avg_pool) deterministic.\n- seed: If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed.\n- seed2: An second seed to avoid seed collision.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output: output tensor after fractional avg pooling.\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) row_pooling_sequence: row pooling sequence, needed to calculate gradient.\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) col_pooling_sequence: column pooling sequence, needed to calculate gradient.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [FractionalAvgPool](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a83af6f6e93dbac2bf42ad6afc05d2a86)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` value, const gtl::ArraySlice\u003c float \u003e & pooling_ratio)` ||\n| [FractionalAvgPool](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1afe59c1134290e6cfe190960e53e836ed)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` value, const gtl::ArraySlice\u003c float \u003e & pooling_ratio, const `[FractionalAvgPool::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [col_pooling_sequence](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a253a9b7940b383f04c70aa5254f52995) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a8b1bbb7c981afe922b39753597ab754b) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a72c1fe35152d17096cfcd5ca3d626e24) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [row_pooling_sequence](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1aef40ec50b456803bb75a8474cdc29fcb) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public static functions ||\n|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|\n| [Deterministic](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a286c7e7d0ea4b667eb0fca780f6c8fd8)`(bool x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) |\n| [Overlapping](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a561400c14f7e0877122cf0faad67b785)`(bool x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) |\n| [PseudoRandom](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1aaeb0a37c716692070fa056b6f164adab)`(bool x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) |\n| [Seed](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1a691079eab5c004dc817e928c12380fe5)`(int64 x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) |\n| [Seed2](#classtensorflow_1_1ops_1_1_fractional_avg_pool_1aba6caf6e7f50e68e728b8ac9357b9353)`(int64 x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs#structtensorflow_1_1ops_1_1_fractional_avg_pool_1_1_attrs) |\n\n| ### Structs ||\n|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::FractionalAvgPool::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/fractional-avg-pool/attrs) | Optional attribute setters for [FractionalAvgPool](/versions/r2.0/api_docs/cc/class/tensorflow/ops/fractional-avg-pool#classtensorflow_1_1ops_1_1_fractional_avg_pool). |\n\nPublic attributes\n-----------------\n\n### col_pooling_sequence\n\n```scdoc\n::tensorflow::Output col_pooling_sequence\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\n### row_pooling_sequence\n\n```scdoc\n::tensorflow::Output row_pooling_sequence\n``` \n\nPublic functions\n----------------\n\n### FractionalAvgPool\n\n```gdscript\n FractionalAvgPool(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input value,\n const gtl::ArraySlice\u003c float \u003e & pooling_ratio\n)\n``` \n\n### FractionalAvgPool\n\n```gdscript\n FractionalAvgPool(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input value,\n const gtl::ArraySlice\u003c float \u003e & pooling_ratio,\n const FractionalAvgPool::Attrs & attrs\n)\n``` \n\nPublic static functions\n-----------------------\n\n### Deterministic\n\n```text\nAttrs Deterministic(\n bool x\n)\n``` \n\n### Overlapping\n\n```text\nAttrs Overlapping(\n bool x\n)\n``` \n\n### PseudoRandom\n\n```text\nAttrs PseudoRandom(\n bool x\n)\n``` \n\n### Seed\n\n```text\nAttrs Seed(\n int64 x\n)\n``` \n\n### Seed2\n\n```text\nAttrs Seed2(\n int64 x\n)\n```"]]