टेंसरफ़्लो :: ऑप्स :: लागू करें

#include <training_ops.h>

एडग्रैड स्कीम के अनुसार '* var' अपडेट करें।

सारांश

जमा + = ग्रेड * ग्रेड वैरिएंट - = एलआर * ग्रेड * (1 / वर्गर्ट (संचित)

तर्क:

  • गुंजाइश: एक स्कोप ऑब्जेक्ट
  • var: एक चर () से होना चाहिए।
  • संचित: एक चर () से होना चाहिए।
  • lr: स्केलिंग फैक्टर। एक स्केलर होना चाहिए।
  • grad: ढाल।

वैकल्पिक विशेषताएँ ( Attrs देखें):

  • use_locking: यदि True , तो var का अपडेट और संचित टेंसरों को लॉक द्वारा संरक्षित किया जाएगा; अन्यथा व्यवहार अपरिभाषित है, लेकिन कम विवाद को प्रदर्शित कर सकता है।

रिटर्न:

  • Output : "var" के समान।

कंस्ट्रक्टर और डिस्ट्रक्टर्स

ApplyAdagrad (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input lr, :: tensorflow::Input grad)
ApplyAdagrad (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input lr, :: tensorflow::Input grad, const ApplyAdagrad::Attrs & attrs)

सार्वजनिक विशेषताएँ

operation
out

सार्वजनिक कार्य

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

सार्वजनिक स्थैतिक कार्य

UpdateSlots (bool x)
UseLocking (bool x)

संरचनाएं

टेंसोफ़्लो :: ऑप्स :: अप्लायग्राड :: एट्र्स

वैकल्पिक विशेषता ApplyAdagrad के लिए निर्धारित करता है

सार्वजनिक विशेषताएँ

ऑपरेशन

Operation operation

बाहर

::tensorflow::Output out

सार्वजनिक कार्य

लागू करें

 ApplyAdagrad(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input lr,
  ::tensorflow::Input grad
)

लागू करें

 ApplyAdagrad(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input lr,
  ::tensorflow::Input grad,
  const ApplyAdagrad::Attrs & attrs
)

नोड

::tensorflow::Node * node() const 

ऑपरेटर :: टेंसरफ़्लो :: इनपुट

 operator::tensorflow::Input() const 
है

ऑपरेटर :: टेंसरफ़्लो :: आउटपुट

 operator::tensorflow::Output() const 

सार्वजनिक स्थैतिक कार्य

अद्यतन

Attrs UpdateSlots(
  bool x
)

उपयोग करना

Attrs UseLocking(
  bool x
)