Google I/O में ट्यूनिंग के लिए धन्यवाद। मांग पर सभी सत्र देखें मांग पर देखें

टेंसरफ़्लो :: ऑप्स :: ApplyGradientDescent

#include <training_ops.h>

इसमें से '' अल्फा '*' डेल्टा 'घटाकर' 'var' 'अपडेट करें।

सारांश

तर्क:

  • गुंजाइश: एक स्कोप ऑब्जेक्ट
  • var: एक चर () से होना चाहिए।
  • अल्फा: स्केलिंग फैक्टर। एक स्केलर होना चाहिए।
  • डेल्टा: परिवर्तन।

वैकल्पिक विशेषताएँ ( Attrs देखें):

  • use_locking: यदि True , तो घटाव को एक लॉक द्वारा संरक्षित किया जाएगा; अन्यथा व्यवहार अपरिभाषित है, लेकिन कम विवाद को प्रदर्शित कर सकता है।

रिटर्न:

  • Output : "var" के समान।

कंस्ट्रक्टर और डिस्ट्रक्टर्स

ApplyGradientDescent (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input alpha, :: tensorflow::Input delta)
ApplyGradientDescent (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input alpha, :: tensorflow::Input delta, const ApplyGradientDescent::Attrs & attrs)

सार्वजनिक विशेषताएँ

operation
out

सार्वजनिक कार्य

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

सार्वजनिक स्थैतिक कार्य

UseLocking (bool x)

संरचनाएं

टेंसोफ़्लो :: ऑप्स :: अप्पग्रेडिएंटडेसेंट :: एट्रस

वैकल्पिक विशेषता ApplyGradientDescent के लिए बसती है

सार्वजनिक विशेषताएँ

ऑपरेशन

Operation operation

बाहर

::tensorflow::Output out

सार्वजनिक कार्य

ApplyGradientDescent

 ApplyGradientDescent(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input alpha,
  ::tensorflow::Input delta
)

ApplyGradientDescent

 ApplyGradientDescent(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input alpha,
  ::tensorflow::Input delta,
  const ApplyGradientDescent::Attrs & attrs
)

नोड

::tensorflow::Node * node() const 

ऑपरेटर :: टेंसरफ़्लो :: इनपुट

 operator::tensorflow::Input() const 
है

ऑपरेटर :: टेंसरफ़्लो :: आउटपुट

 operator::tensorflow::Output() const 

सार्वजनिक स्थैतिक कार्य

उपयोग करना

Attrs UseLocking(
  bool x
)