संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: CropAndResizeGradImage
#include <image_ops.h>
इनपुट इमेज टेंसर के संबंध में क्रॉप_एंड_रीसाइज ऑप के ग्रेडिएंट की गणना करता है।
सारांश
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- ग्रेड: आकार का एक 4-डी टेंसर
[num_boxes, crop_height, crop_width, depth]
। - बक्से: आकार का एक 2-डी टेंसर
[num_boxes, 4]
। टेंसर की i
वीं पंक्ति box_ind[i]
छवि में एक बॉक्स के निर्देशांक निर्दिष्ट करती है और सामान्यीकृत निर्देशांक [y1, x1, y2, x2]
में निर्दिष्ट होती है। y
का एक सामान्यीकृत समन्वय मान y * (image_height - 1)
पर छवि निर्देशांक में मैप किया जाता है, इसलिए छवि ऊंचाई निर्देशांक में सामान्यीकृत छवि ऊंचाई का [0, 1]
अंतराल `[0, image_height - 1] पर मैप किया जाता है। हम y1 > y2 की अनुमति देते हैं, इस स्थिति में नमूना की गई फसल मूल छवि का ऊपर-नीचे फ़्लिप किया हुआ संस्करण है। चौड़ाई आयाम को समान रूप से व्यवहार किया जाता है। [0, 1]
सीमा के बाहर सामान्यीकृत निर्देशांक की अनुमति है, इस स्थिति में हम इनपुट छवि मानों को एक्सट्रपलेशन करने के लिए extrapolation_value
उपयोग करते हैं। - बॉक्स_इंड:
[0, batch)
में int32 मानों के साथ आकार का 1-डी टेंसर [num_boxes]
। box_ind[i]
का मान उस छवि को निर्दिष्ट करता है जिसे i
-th बॉक्स संदर्भित करता है। - छवि_आकार: मूल छवि आकार वाले मान
[batch, image_height, image_width, depth]
वाला 1-डी टेंसर। image_height
और image_width
दोनों को सकारात्मक होना आवश्यक है।
वैकल्पिक विशेषताएँ (देखें Attrs
):
- विधि: इंटरपोलेशन विधि को निर्दिष्ट करने वाली एक स्ट्रिंग। अभी केवल 'बिलिनियर' समर्थित है।
रिटर्न:
-
Output
: आकार का एक 4-डी टेंसर [batch, image_height, image_width, depth]
।
निर्माता और विध्वंसक |
---|
CropAndResizeGradImage (const :: tensorflow::Scope & scope, :: tensorflow::Input grads, :: tensorflow::Input boxes, :: tensorflow::Input box_ind, :: tensorflow::Input image_size, DataType T)
|
CropAndResizeGradImage (const :: tensorflow::Scope & scope, :: tensorflow::Input grads, :: tensorflow::Input boxes, :: tensorflow::Input box_ind, :: tensorflow::Input image_size, DataType T, const CropAndResizeGradImage::Attrs & attrs) |
सार्वजनिक स्थैतिक कार्य |
---|
Method (StringPiece x) | |
सार्वजनिक गुण
सार्वजनिक समारोह
नोड
::tensorflow::Node * node() const
operator::tensorflow::Input() const
ऑपरेटर::टेन्सरफ़्लो::आउटपुट
operator::tensorflow::Output() const
सार्वजनिक स्थैतिक कार्य
तरीका
Attrs Method(
StringPiece x
)
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::CropAndResizeGradImage Class Reference\n\ntensorflow::ops::CropAndResizeGradImage\n=======================================\n\n`#include \u003cimage_ops.h\u003e`\n\nComputes the gradient of the crop_and_resize op wrt the input image tensor.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- grads: A 4-D tensor of shape `[num_boxes, crop_height, crop_width, depth]`.\n- boxes: A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensor specifies the coordinates of a box in the `box_ind[i]` image and is specified in normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image height is mapped to \\`\\[0, image_height - 1\\] in image height coordinates. We do allow y1 \\\u003e y2, in which case the sampled crop is an up-down flipped version of the original image. The width dimension is treated similarly. Normalized coordinates outside the `[0, 1]` range are allowed, in which case we use `extrapolation_value` to extrapolate the input image values.\n- box_ind: A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`. The value of `box_ind[i]` specifies the image that the `i`-th box refers to.\n- image_size: A 1-D tensor with value `[batch, image_height, image_width, depth]` containing the original image size. Both `image_height` and `image_width` need to be positive.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-image/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1_1_attrs)):\n\n- method: A string specifying the interpolation method. Only 'bilinear' is supported for now.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A 4-D tensor of shape `[batch, image_height, image_width, depth]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [CropAndResizeGradImage](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a542871b76c83a2a8ae095c5ade81ab0e)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grads, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` boxes, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` box_ind, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` image_size, DataType T)` ||\n| [CropAndResizeGradImage](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a5314c519439a0018be03ae0599c320d3)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grads, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` boxes, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` box_ind, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` image_size, DataType T, const `[CropAndResizeGradImage::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-image/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1ad757af122f700a9ab5acbd38629f83fb) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1adc227b21eb0d9d4ca672f34f67b7943d) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a614b37524e5b31e34837f59518d54830)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a561ea8804d44d30b5d50d84b6619a89c)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a189d45da47ace193a132f998417286d2)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Method](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1a10a7af8fef715e541d4c1c1472871fa5)`(StringPiece x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-image/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_grad_image_1_1_attrs) |\n\n| ### Structs ||\n|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::CropAndResizeGradImage::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-image/attrs) | Optional attribute setters for [CropAndResizeGradImage](/versions/r1.15/api_docs/cc/class/tensorflow/ops/crop-and-resize-grad-image#classtensorflow_1_1ops_1_1_crop_and_resize_grad_image). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### CropAndResizeGradImage\n\n```gdscript\n CropAndResizeGradImage(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input grads,\n ::tensorflow::Input boxes,\n ::tensorflow::Input box_ind,\n ::tensorflow::Input image_size,\n DataType T\n)\n``` \n\n### CropAndResizeGradImage\n\n```gdscript\n CropAndResizeGradImage(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input grads,\n ::tensorflow::Input boxes,\n ::tensorflow::Input box_ind,\n ::tensorflow::Input image_size,\n DataType T,\n const CropAndResizeGradImage::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### Method\n\n```text\nAttrs Method(\n StringPiece x\n)\n```"]]