टेंसरफ़्लो :: ऑप्स :: SparseApplyFtrl
#include <training_ops.h>
Ftrl-proximal योजना के अनुसार '* var' में प्रासंगिक प्रविष्टियाँ अद्यतन करें।
सारांश
हम उन पंक्तियों के लिए हैं जिनके लिए हम ग्रेड हैं, हम var, संचित और रैखिक को निम्नानुसार अपडेट करते हैं: $$accum_new = accum + grad * grad$$ $$linear += grad + (accum_{new}^{-lr_{power}} - accum^{-lr_{power}} / lr * var$$ $$quadratic = 1.0 / (accum_{new}^{lr_{power}} * lr) + 2 * l2$$ $$var = (sign(linear) * l1 - linear) / quadratic\ if\ |linear| > l1\ else\ 0.0$$ $$accum = accum_{new}$$
तर्क:
- गुंजाइश: एक स्कोप ऑब्जेक्ट
- var: एक चर () से होना चाहिए।
- संचित: एक चर () से होना चाहिए।
- रैखिक: एक चर () से होना चाहिए।
- grad: ढाल।
- सूचकांक: संस्करण और संचय के पहले आयाम में सूचकांकों का एक वेक्टर।
- lr: स्केलिंग फैक्टर। एक स्केलर होना चाहिए।
- एल 1: एल 1 नियमितीकरण। एक स्केलर होना चाहिए।
- एल 2: एल 2 नियमितीकरण। एक स्केलर होना चाहिए।
- lr_power: स्केलिंग कारक। एक स्केलर होना चाहिए।
वैकल्पिक विशेषताएँ ( Attrs
देखें):
- use_locking: यदि
True
, तो var का अपडेट और संचित टेंसरों को लॉक द्वारा संरक्षित किया जाएगा; अन्यथा व्यवहार अपरिभाषित है, लेकिन कम विवाद को प्रदर्शित कर सकता है।
रिटर्न:
-
Output
: "var" के समान।
कंस्ट्रक्टर और डिस्ट्रक्टर्स | |
---|---|
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power) | |
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs) |
सार्वजनिक विशेषताएँ | |
---|---|
operation | |
out |
सार्वजनिक कार्य | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
सार्वजनिक स्थैतिक कार्य | |
---|---|
UseLocking (bool x) |
संरचनाएं | |
---|---|
टेंसोफ़्लो :: ऑप्स :: स्पार्सेप्लीफ्ल्ट :: अट्र्स | वैकल्पिक विशेषता SparseApplyFtrl के लिए बसती है । |
सार्वजनिक विशेषताएँ
ऑपरेशन
Operation operation
बाहर
::tensorflow::Output out
सार्वजनिक कार्य
SparseApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power )
SparseApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs )
नोड
::tensorflow::Node * node() const
ऑपरेटर :: टेंसरफ़्लो :: इनपुट
operator::tensorflow::Input() constहै
ऑपरेटर :: टेंसरफ़्लो :: आउटपुट
operator::tensorflow::Output() const
सार्वजनिक स्थैतिक कार्य
उपयोग करना
Attrs UseLocking( bool x )