Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: Genişleme2D
#include <nn_ops.h>
4 boyutlu input
ve 3 boyutlu filter
tensörlerinin gri tonlamalı genişlemesini hesaplar.
Özet
input
tensörünün şekli [batch, in_height, in_width, depth]
şeklindedir ve filter
tensörünün şekli [filter_height, filter_width, depth]
şeklindedir, yani her giriş kanalı kendi yapılandırma fonksiyonuyla diğerlerinden bağımsız olarak işlenir. output
tensörünün şekli [batch, out_height, out_width, depth]
şeklindedir. Çıkış tensörünün uzaysal boyutları padding
algoritmasına bağlıdır. Şu anda yalnızca varsayılan "NHWC" data_format
destekliyoruz.
Ayrıntılı olarak, gri tonlamalı morfolojik 2 boyutlu genişleme maksimum toplam korelasyonudur ( conv2d
ile tutarlılık sağlamak için yansıtılmamış filtreler kullanırız):
output[b, y, x, c] =
max_{dy, dx} input[b,
strides[1] * y + rates[1] * dy,
strides[2] * x + rates[2] * dx,
c] +
filter[dy, dx, c]
Maksimum havuzlama, filtrenin havuzlama çekirdek boyutuna eşit boyuta sahip olduğu ve tamamı sıfırları içerdiği özel bir durumdur.
İkilik hakkında not: filter
input
genişletmesi, yansıyan filter
-input
aşındırmasının olumsuzlanmasına eşittir.
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- giriş: şekilli 4-D
[batch, in_height, in_width, depth]
. - filtre: şekilli 3 boyutlu
[filter_height, filter_width, depth]
. - adımlar: Giriş tensörünün her boyutu için kayan pencerenin adımı. Şunlar olmalıdır:
[1, stride_height, stride_width, 1]
. - oranlar: Atröz morfolojik genişleme için giriş adımı. Şunlar olmalıdır:
[1, rate_height, rate_width, 1]
. - padding: Kullanılacak dolgu algoritmasının türü.
İade:
-
Output
: Şekilli 4-D [batch, out_height, out_width, depth]
.
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::Dilation2D Class Reference\n\ntensorflow::ops::Dilation2D\n===========================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes the grayscale dilation of 4-D `input` and 3-D `filter` tensors.\n\nSummary\n-------\n\nThe `input` tensor has shape `[batch, in_height, in_width, depth]` and the `filter` tensor has shape `[filter_height, filter_width, depth]`, i.e., each input channel is processed independently of the others with its own structuring function. The `output` tensor has shape `[batch, out_height, out_width, depth]`. The spatial dimensions of the output tensor depend on the `padding` algorithm. We currently only support the default \"NHWC\" `data_format`.\n\nIn detail, the grayscale morphological 2-D dilation is the max-sum correlation (for consistency with `conv2d`, we use unmirrored filters): \n\n```scdoc\noutput[b, y, x, c] =\n max_{dy, dx} input[b,\n strides[1] * y + rates[1] * dy,\n strides[2] * x + rates[2] * dx,\n c] +\n filter[dy, dx, c]\n```\n\n\u003cbr /\u003e\n\nMax-pooling is a special case when the filter has size equal to the pooling kernel size and contains all zeros.\n\nNote on duality: The dilation of `input` by the `filter` is equal to the negation of the erosion of `-input` by the reflected `filter`.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 4-D with shape `[batch, in_height, in_width, depth]`.\n- filter: 3-D with shape `[filter_height, filter_width, depth]`.\n- strides: The stride of the sliding window for each dimension of the input tensor. Must be: `[1, stride_height, stride_width, 1]`.\n- rates: The input stride for atrous morphological dilation. Must be: `[1, rate_height, rate_width, 1]`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D with shape `[batch, out_height, out_width, depth]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Dilation2D](#classtensorflow_1_1ops_1_1_dilation2_d_1aa7fba6ab148288fc230175c265483ff3)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, const gtl::ArraySlice\u003c int \u003e & strides, const gtl::ArraySlice\u003c int \u003e & rates, StringPiece padding)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_dilation2_d_1a50e0232a57e1ec03bc56803f2e2ae58e) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_dilation2_d_1ae68b7f48c9fc91ffdef4e18bd34625f0) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_dilation2_d_1a965eb807b87a9ac84ef8533e6da72768)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_dilation2_d_1ae1a45a55c3092ef319c027a697e3e667)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_dilation2_d_1a451d294669723935c6618946259273c3)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Dilation2D\n\n```gdscript\n Dilation2D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n const gtl::ArraySlice\u003c int \u003e & rates,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]