Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: Deney1
#include <math_ops.h>
exp(x) - 1
öğesini eleman bazında hesaplar.
Özet
yani exp(x) - 1
veya e^(x) - 1
, burada x
giriş tensörüdür. e
Euler sayısını belirtir ve yaklaşık olarak 2,718281'e eşittir.
x = tf.constant(2.0)
tf.math.expm1(x) ==> 6.389056
x = tf.constant([2.0, 8.0])
tf.math.expm1(x) ==> array([6.389056, 2979.958], dtype=float32)
x = tf.constant(1 + 1j)
tf.math.expm1(x) ==> (0.46869393991588515+2.2873552871788423j)
Argümanlar:
İade:
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::Expm1 Class Reference\n\ntensorflow::ops::Expm1\n======================\n\n`#include \u003cmath_ops.h\u003e`\n\nComputes `exp(x) - 1` element-wise.\n\nSummary\n-------\n\ni.e. `exp(x) - 1` or `e^(x) - 1`, where `x` is the input tensor. `e` denotes Euler's number and is approximately equal to 2.718281.\n\n\n```gdscript\n x = tf.constant(2.0)\n tf.math.expm1(x) ==\u003e 6.389056\n```\n\n\u003cbr /\u003e\n\n\n```gdscript\n x = tf.constant([2.0, 8.0])\n tf.math.expm1(x) ==\u003e array([6.389056, 2979.958], dtype=float32)\n```\n\n\u003cbr /\u003e\n\n\n```gdscript\n x = tf.constant(1 + 1j)\n tf.math.expm1(x) ==\u003e (0.46869393991588515+2.2873552871788423j)\n \n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The y tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Expm1](#classtensorflow_1_1ops_1_1_expm1_1a8b296111e0b616c52bb1ac32c54a6d7a)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_expm1_1a7a9850515f4ea6fbf373787463eb09df) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [y](#classtensorflow_1_1ops_1_1_expm1_1a05fbc6afc7aea30c2af304ea0f47dbf4) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_expm1_1a8f37d6ec3ccfb35f8989f12b006ef8f3)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_expm1_1a9ea90c07657a9520b10ba34cf017fe7a)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_expm1_1a0adfeeb72d4fe4c11e5d03a6fd39facc)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### y\n\n```text\n::tensorflow::Output y\n``` \n\nPublic functions\n----------------\n\n### Expm1\n\n```gdscript\n Expm1(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]