Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: FusedPadConv2D
#include <nn_ops.h>
Evrişim sırasında ön işlem olarak dolgu gerçekleştirir.
Özet
FusedResizeAndPadConv2d'ye benzer şekilde, bu işlem, uzamsal dolgu dönüştürme aşamasının im2col aramasıyla birleştirildiği, ancak bu durumda yeniden boyutlandırma için gereken çift doğrusal filtrelemenin olmadığı optimize edilmiş bir uygulamaya izin verir. Dolguyu birleştirmek, ara sonuçları tam tensörler olarak yazma ihtiyacını ortadan kaldırarak hafıza basıncını azaltır ve dönüşüm hesaplamalarını birleştirerek bazı gecikme kazanımları elde edebiliriz. Conv2D'nin data_format özelliği bu operasyon tarafından desteklenmiyor ve bunun yerine 'NHWC' sırası kullanılıyor. Dahili olarak bu operasyon, grafik başına tek bir karalama arabelleği kullanır; bu, birden fazla sürümün paralel olarak çalıştırılması durumunda engelleneceği anlamına gelir. Bunun nedeni, bu operatörün öncelikle bellek kullanımını en aza indirmeye yönelik bir optimizasyon olmasıdır.
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- giriş: şekilli 4-D
[batch, in_height, in_width, in_channels]
. - dolgular: Dolgu boyutlarını belirten iki sütunlu bir matris. Satır sayısı
input
sıralamasıyla aynı olmalıdır. - filtre: 4-D şekilli
[filter_height, filter_width, in_channels, out_channels]
. - adımlar: 1 boyutlu uzunluk 4.
input
her boyutu için kayan pencerenin adımı. Formatla belirtilen boyutla aynı sırada olmalıdır. - padding: Kullanılacak dolgu algoritmasının türü.
İade:
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::FusedPadConv2D Class Reference\n\ntensorflow::ops::FusedPadConv2D\n===============================\n\n`#include \u003cnn_ops.h\u003e`\n\nPerforms a padding as a preprocess during a convolution.\n\nSummary\n-------\n\nSimilar to FusedResizeAndPadConv2d, this op allows for an optimized implementation where the spatial padding transformation stage is fused with the im2col lookup, but in this case without the bilinear filtering required for resizing. Fusing the padding prevents the need to write out the intermediate results as whole tensors, reducing memory pressure, and we can get some latency gains by merging the transformation calculations. The data_format attribute for [Conv2D](/versions/r1.15/api_docs/cc/class/tensorflow/ops/conv2-d#classtensorflow_1_1ops_1_1_conv2_d) isn't supported by this op, and 'NHWC' order is used instead. Internally this op uses a single per-graph scratch buffer, which means that it will block if multiple versions are being run in parallel. This is because this operator is primarily an optimization to minimize memory usage.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 4-D with shape `[batch, in_height, in_width, in_channels]`.\n- paddings: A two-column matrix specifying the padding sizes. The number of rows must be the same as the rank of `input`.\n- filter: 4-D with shape `[filter_height, filter_width, in_channels, out_channels]`.\n- strides: 1-D of length 4. The stride of the sliding window for each dimension of `input`. Must be in the same order as the dimension specified with format.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [FusedPadConv2D](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a29433f179ebfe80f5713baf602db0fb2)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` paddings, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, StringPiece mode, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a74eadb05eed0b4ac42f88868b346c2c9) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a9b745852fc93e6ac7cad86ed8d30355d) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a834a7fdc26dccf20c023a8a8f52aa70c)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a041ca6414035fd6c7c4526905e111b55)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1ab21cc1c1b746da897e2ee793cb9320a4)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### FusedPadConv2D\n\n```gdscript\n FusedPadConv2D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input paddings,\n ::tensorflow::Input filter,\n StringPiece mode,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]