Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: L2 Kaybı
#include <nn_ops.h>
L2 Kaybı.
Özet
Bir tensörün L2 normunun yarısını sqrt
olmadan hesaplar:
output = sum(t ** 2) / 2
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- t: Tipik olarak 2 boyutludur ancak herhangi bir boyuta sahip olabilir.
İade:
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::L2Loss Class Reference\n\ntensorflow::ops::L2Loss\n=======================\n\n`#include \u003cnn_ops.h\u003e`\n\nL2 Loss.\n\nSummary\n-------\n\nComputes half the L2 norm of a tensor without the `sqrt`: \n\n```scdoc\noutput = sum(t ** 2) / 2\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- t: Typically 2-D, but may have any dimensions.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 0-D.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [L2Loss](#classtensorflow_1_1ops_1_1_l2_loss_1a595112ba30938b3d821dd5d7ade896ce)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` t)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_l2_loss_1aa4ef80dec6a4c63c50065b43a205ddff) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_l2_loss_1a9907900c49e78c512ba25a93c8737b42) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_l2_loss_1af18c04f060f27a407e1e906362251dd8)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_l2_loss_1a339da03f537d6b37b058d6ae58673673)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_l2_loss_1a190fdff9721343a1c2b604f9427463e4)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### L2Loss\n\n```gdscript\n L2Loss(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input t\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]