Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: AynaPad
#include <array_ops.h>
Bir tensörü yansıtılmış değerlerle doldurur.
Özet
Bu işlem, belirttiğiniz paddings
göre bir input
yansıtılmış değerlerle doldurur. paddings
[n, 2]
şeklinde bir tam sayı tensördür; burada n, input
sırasıdır. input
her D boyutu için, paddings[D, 0]
o boyuttaki input
içeriğinden önce kaç değer ekleneceğini belirtir ve paddings[D, 1]
o boyuttaki input
içeriğinden sonra kaç değer ekleneceğini belirtir. copy_border
true ise (sırasıyla false ise), hem paddings[D, 0]
hem de paddings[D, 1]
input.dim_size(D)
'den (veya input.dim_size(D) - 1
) büyük olmamalıdır.
Çıktının her D boyutunun yastıklı boyutu şöyledir:
paddings(D, 0) + input.dim_size(D) + paddings(D, 1)
Örneğin:
# 't' is [[1, 2, 3], [4, 5, 6]].
# 'paddings' is [[1, 1]], [2, 2]].
# 'mode' is SYMMETRIC.
# rank of 't' is 2.
pad(t, paddings) ==> [[2, 1, 1, 2, 3, 3, 2]
[2, 1, 1, 2, 3, 3, 2]
[5, 4, 4, 5, 6, 6, 5]
[5, 4, 4, 5, 6, 6, 5]]
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- giriş: Doldurulacak giriş tensörü.
- dolgular: Dolgu boyutlarını belirten iki sütunlu bir matris. Satır sayısı
input
sıralamasıyla aynı olmalıdır. - modu:
REFLECT
veya SYMMETRIC
. Yansıtma modunda dolgulu bölgeler sınırları içermezken simetrik modda dolgulu bölgeler kenarları içerir. Örneğin, input
[1, 2, 3]
ve paddings
[0, 2]
ise, yansıtma modunda çıkış [1, 2, 3, 2, 1]
olur ve [1, 2, 3, 3, 2]
olur [1, 2, 3, 3, 2]
simetrik modda.
İade:
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::MirrorPad Class Reference\n\ntensorflow::ops::MirrorPad\n==========================\n\n`#include \u003carray_ops.h\u003e`\n\nPads a tensor with mirrored values.\n\nSummary\n-------\n\nThis operation pads a `input` with mirrored values according to the `paddings` you specify. `paddings` is an integer tensor with shape `[n, 2]`, where n is the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates how many values to add before the contents of `input` in that dimension, and `paddings[D, 1]` indicates how many values to add after the contents of `input` in that dimension. Both `paddings[D, 0]` and `paddings[D, 1]` must be no greater than `input.dim_size(D)` (or `input.dim_size(D) - 1`) if `copy_border` is true (if false, respectively).\n\nThe padded size of each dimension D of the output is:\n\n\n`paddings(D, 0) + input.dim_size(D) + paddings(D, 1)`\n\nFor example:\n\n\n```text\n# 't' is [[1, 2, 3], [4, 5, 6]].\n# 'paddings' is [[1, 1]], [2, 2]].\n# 'mode' is SYMMETRIC.\n# rank of 't' is 2.\npad(t, paddings) ==\u003e [[2, 1, 1, 2, 3, 3, 2]\n [2, 1, 1, 2, 3, 3, 2]\n [5, 4, 4, 5, 6, 6, 5]\n [5, 4, 4, 5, 6, 6, 5]]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: The input tensor to be padded.\n- paddings: A two-column matrix specifying the padding sizes. The number of rows must be the same as the rank of `input`.\n- mode: Either `REFLECT` or `SYMMETRIC`. In reflect mode the padded regions do not include the borders, while in symmetric mode the padded regions do include the borders. For example, if `input` is `[1, 2, 3]` and `paddings` is `[0, 2]`, then the output is `[1, 2, 3, 2, 1]` in reflect mode, and it is `[1, 2, 3, 3, 2]` in symmetric mode.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The padded tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MirrorPad](#classtensorflow_1_1ops_1_1_mirror_pad_1ade8674bcac38c7b92e49227402b3aeab)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` paddings, StringPiece mode)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_mirror_pad_1a20963b11eba097a4a292d10fe912fe9f) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_mirror_pad_1acddc2951f705b38786a6c90517025bbd) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_mirror_pad_1ac601ae413e0e24707abfe6bd6e000e3e)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_mirror_pad_1a27d0164d159236fcb1639d0dd7604c31)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_mirror_pad_1a682f1e9bfbad14b9b9529733b71dba26)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### MirrorPad\n\n```gdscript\n MirrorPad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input paddings,\n StringPiece mode\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]